Advertisement

Journal of Geodesy

, 85:585 | Cite as

Alternative method for angular rate determination within the GOCE gradiometer processing

  • C. StummerEmail author
  • T. Fecher
  • R. Pail
Original Article

Abstract

The most crucial part of the GOCE gradiometer processing is, besides the internal calibration of the gradiometer, the determination of the satellite’s inertial angular rate. This paper describes a new method for the angular rate determination. It is based on the stochastic properties of the GOCE star sensors and the gradiometer. The attitude information of both instrument types is combined at the level of angular rates. The combination is done in the spectral domain by Wiener filtering, and thus using an optimal relative weighting of the star sensor and gradiometer attitude information. Since the complete processing chain from raw measurements to gravity field solutions is performed, the results are not only analyzed at the level of gravity gradients, but also of gravity field solutions. Compared to the nominal method, already the resulting gravity gradients show a significantly improved performance for the frequencies (mainly) below the gradiometer measurement bandwidth. This can be verified by analysis of the gravity gradient trace. The improvement is propagated to the level of gravity field models, where a better accuracy can be observed for selected groups of coefficients at characteristic bands at orders k × 16, with integer k, up to high harmonic degrees.

Keywords

GOCE Gradiometer Star sensor Accelerations Angular rate Gravity gradients 

References

  1. Best R (1991) Digitale Messwertverarbeitung. Oldenbourg, MünchenGoogle Scholar
  2. Bruinsma S, Marty J, Balmino G, Biancale R, Foerste C, Abrikosov O, Neumayer H (2010) GOCE Gravity Field Recovery by Means of the Direct Numerical Method. Proceedings of the ESA Living Planet Symposium, 28 June–2 July 2010, Bergen, Norway, ESA SP-686 (CD-ROM)Google Scholar
  3. Cesare C, Catastini G (2008) Gradiometer On-Orbit Calibration Procedure Analysis. Technical Note to ESA, GO-TN-AI-0069, Issue 4, Alenia AerospazioGoogle Scholar
  4. Cesare C, Sechi G, Catastini G (2008) Gradiometer Ground Processing Algorithms Documentation. Technical Note to ESA, GO-TN-AI-0067, Issue 7, Alenia AerospazioGoogle Scholar
  5. Drinkwater M, Haagmans R, Muzzi D, Popescu A, Floberghagen R, Kern M, Fehringer M (2007) The GOCE gravity mission: ESA’s first core explorer. In: Proceedings 3rd GOCE user workshop, European Space Agency, Noordwijk, ESA SP-627, pp 1–8Google Scholar
  6. Frommknecht B (2008) Integrated Sensor Analysis of the GRACE Mission. DGK, Reihe C, 617, Verlag der Bayerischen Akademie der Wissenschaften, MünchenGoogle Scholar
  7. Frommknecht B, Stummer C, Gilles P, Floberghagen R, Cesare S, Catastini G, Meloni M, Bigazzi A (2010) GOCE L1b Processing. Proceedings of the ESA Living Planet Symposium, 28 June–2 July 2010, Bergen, Norway, ESA SP-686 (CD-ROM)Google Scholar
  8. Gruber T, Abrikosov O, Hugentobler U (2010a) GOCE High Level Processing Facility; GOCE Standards. Tech. Rep. GO-MA-HPF-GS-0111, Issue 3.2Google Scholar
  9. Gruber T, Rummel R, Abrikosov O, van Hees R (2010b) GOCE High Level Processing Facility; GOCE Level 2 Product Data Handbook. Tech. Rep. GO-MA-HPF-GS-0110, Issue 4.2Google Scholar
  10. Johannessen J (1999) Gravity Field and Steady-State Ocean Circulation Mission. Tech. Rep. ESA SP-1233(1), NoordwijkGoogle Scholar
  11. Jørgensen J (2003) ASC GOCE design and performance report. Technical Note to ESA, GO-RP-DTU-2018, Issue 1.1Google Scholar
  12. Kern M, Haagmans R, Plank G, Lamarre D, Floberghagen R, Drinkwater M (2007) In-flight GOCE gradiometer calibration and validation. American Geophysical Union, Fall Meeting 2007, abstract G33A-0894Google Scholar
  13. Lamarre D (2008) Algorithm description: retrieval of gradiometer parameters. Version 2.0 draft, 23 April 2008Google Scholar
  14. Mayer-Gürr T, Eicker A, Kurtenbach E, Ilk K (2010) ITG-GRACE: Global static and temporal gravity field models from GRACE data. In: Flechtner F, Mandea M, Gruber T, Rothacher M, Wickert J, Güntner A, Schöne T (eds) System Earth via Geodetic-Geophysical Space Techniques, Advanced Technologies in Earth Sciences, pp 159–168. doi: 10.1007/978-3-642-10228-8_13, ISBN: 978-3-642-10227-1
  15. Mayrhofer R, Pail R, Fecher T (2010) Quick-look gravity field solution as part of the GOCE quality assessment. Proceedings of the ESA Living Planet Symposium, 28 June–2 July 2010, Bergen, Norway, ESA SP-686 (CD-ROM)Google Scholar
  16. Metzler B, Pail R (2005) GOCE data processing the spherical cap regularization approach. Stud Geophys Geod 49: 441–462. doi: 10.1007/s11200-005-0021-5 CrossRefGoogle Scholar
  17. Migliaccio F, Reguzzoni M, Sansó F, Tscherning C, Veicherts M (2010) GOCE data analysis: the space-wise approach and the first space-wise gravity field model. Proceedings of the ESA Living Planet Symposium, 28 June–2 July 2010, Bergen, Norway, ESA SP-686 (CD-ROM)Google Scholar
  18. Pail R (2005) A parametric study on the impact of satellite attitude errors on GOCE gravity field recovery. J Geod 79: 231–241. doi: 10.1007/s00190-005-0464-z CrossRefGoogle Scholar
  19. Pail R, Metzler B, Preimesberger T, Lackner B, Wermuth M (2007) GOCE quick look—gravity field analysis in the framework of HPF. In: Proceedings 3rd GOCE user workshop, European Space Agency, Noordwijk, ESA SP-627, pp 325–332Google Scholar
  20. Pail R, Goiginger H, Mayrhofer R, Schuh W, Brockmann J, Krasbutter I, Höck E, Fecher T (2010) Global gravity field model derived from orbit and gradiometry data applying the time-wise method. Proceedings of the ESA Living Planet Symposium, 28 June–2 July 2010, Bergen, Norway, ESA SP-686 (CD-ROM)Google Scholar
  21. Papoulis A (1984) Signal analysis. McGraw-Hill, New YorkGoogle Scholar
  22. Rispens S, Bouman J (2009) Calibrating the GOCE accelerations with star sensor data and a global gravity field model. J Geod 83: 737–749. doi: 10.1007/s00190-008-0290-1 CrossRefGoogle Scholar
  23. Rummel R (1986) Satellite Gradiometry. Lecture Notes in Earth Sciences 7:317–363, Springer, BerlinGoogle Scholar
  24. Rummel R, Gruber T, Koop R (2004) High Level Processing Facility for GOCE: Products and Processing Strategy. In: Lacoste H (ed). Proceedings of the 2nd International GOCE User Workshop “GOCE, The Geoid and Oceanography”, ESA SP-569Google Scholar
  25. Stummer C, Rispens S (2009) How to get gravity gradients from the GOCE measurements. Paper presented at the IAG 2009 Scientific Assembly “Geodesy for Planet Earth”, 31 August–4 September 2009, Buenos Aires, ArgentinaGoogle Scholar
  26. Visser P (2008) Exploring the possibilities for star-tracker assisted calibration of the six individual GOCE accelerometers. J Geod 82: 591–600. doi: 10.1007/s00190-007-0205-6 CrossRefGoogle Scholar
  27. Wittenburg J (1977) Dynamics of systems of rigid bodies. BG Teubner, StuttgartGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institut für Astronomische und Physikalische Geodäsie (IAPG), Technische Universität MünchenMunichGermany

Personalised recommendations