Journal of Geodesy

, Volume 85, Issue 7, pp 377–393 | Cite as

VLBI-derived troposphere parameters during CONT08

  • R. HeinkelmannEmail author
  • J. Böhm
  • S. Bolotin
  • G. Engelhardt
  • R. Haas
  • R. Lanotte
  • D. S. MacMillan
  • M. Negusini
  • E. Skurikhina
  • O. Titov
  • H. Schuh
Original Article


Time-series of zenith wet and total troposphere delays as well as north and east gradients are compared, and zenith total delays (ZTD) are combined on the level of parameter estimates. Input data sets are provided by ten Analysis Centers (ACs) of the International VLBI Service for Geodesy and Astrometry (IVS) for the CONT08 campaign (12–26 August 2008). The inconsistent usage of meteorological data and models, such as mapping functions, causes systematics among the ACs, and differing parameterizations and constraints add noise to the troposphere parameter estimates. The empirical standard deviation of ZTD among the ACs with regard to an unweighted mean is 4.6 mm. The ratio of the analysis noise to the observation noise assessed by the operator/software impact (OSI) model is about 2.5. These and other effects have to be accounted for to improve the intra-technique combination of VLBI-derived troposphere parameters. While the largest systematics caused by inconsistent usage of meteorological data can be avoided and the application of different mapping functions can be considered by applying empirical corrections, the noise has to be modeled in the stochastic model of intra-technique combination. The application of different stochastic models shows no significant effects on the combined parameters but results in different mean formal errors: the mean formal errors of the combined ZTD are 2.3 mm (unweighted), 4.4 mm (diagonal), 8.6 mm [variance component (VC) estimation], and 8.6 mm (operator/software impact, OSI). On the one hand, the OSI model, i.e. the inclusion of off-diagonal elements in the cofactor-matrix, considers the reapplication of observations yielding a factor of about two for mean formal errors as compared to the diagonal approach. On the other hand, the combination based on VC estimation shows large differences among the VCs and exhibits a comparable scaling of formal errors. Thus, for the combination of troposphere parameters a combination of the two extensions of the stochastic model is recommended.


VLBI Troposphere parameters Intra-technique combination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the International Terrestrial Reference Frame for Earth science applications. J Geophys Res 107(B10): 2214. doi: 10.1029/2001JB000561 CrossRefGoogle Scholar
  2. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112(B09401). doi: 10.1029/2007JB004949
  3. Angermann D, Drewes H, Kruegel M, Meisel B, Gerstl M, Kelm R, Mueller H, Seemueller W, Tesmer V (2004) ITRS Combination Center at DGFI: a Terrestrial Reference Frame Realization 2003. Verlag der Bayerischen Akademie der Wissenschaften in Kommission beim Verlag C. H. Beck, Reihe B (313), MünchenGoogle Scholar
  4. Berg H (1948) Allgemeine Meteorologie. Dümmler, BonnGoogle Scholar
  5. Bierman GJ (1977) Factorization methods for discrete sequential estimation. In: Bellman R (ed) Mathematics in Science and Engineering, vol 128, University of Southern CaliforniaGoogle Scholar
  6. Böckmann S, Artz T, Nothnagel A (2010) VLBI terrestrial reference frame contributions to ITRF2008. J Geod 84: 201–219. doi: 10.1007/s00190-009-0357-7 CrossRefGoogle Scholar
  7. Böhm J, Messerer E, Schuh H (2002) Comparison of tropospheric parameters submitted to the IVS Analysis Pilot Project. In: Vandenberg NR, Baver KD (eds) IVS 2002 General Meeting Proceedings. NASA/CP-2002-210002, pp 340–344Google Scholar
  8. Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and VLBI from ECMWF operational analysis data. J Geophys Res 111(B02406). doi: 10.1029/2005JB003629
  9. Böhm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10): 679–683CrossRefGoogle Scholar
  10. Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J Geophys Res 102:20489–20502CrossRefGoogle Scholar
  11. Davis J, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modelling errors on the estimates of baseline lengths. Rad Sci 20: 1593–1607CrossRefGoogle Scholar
  12. Elgered G (2001) An overview of COST Action 716: exploitation of ground-based GPS for climate and numerical weather prediction applications. Phys Chem Earth 26(6–8): 399–404Google Scholar
  13. Fang X (2007) Statistische Analyse von Ausgleichungsergebnissen auf der Basis teilweise identischer Messwerte. Diplomarbeit im Studiengang Geodäsie und Geoinformatik, Geodätisches Institut, Leibniz Universität HannoverGoogle Scholar
  14. Förstner W (1979) Ein Verfahren zur Schätzung von Varianz- und Kovarianzkomponenten. Allg Vermess-Nachr (11–12):446–453Google Scholar
  15. Gelb, A (ed.) (1974) Applied optimal estimation, Sixth printing. The M.I.T. Press, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  16. Heinkelmann R (2008) Bestimmung des atmosphärischen Wasserdampfes mittels VLBI als Beitrag zur Klimaforschung. Geowissenschaftliche Mitteilungen No. 82. ISSN 1811-8380Google Scholar
  17. Heinkelmann R (2009) IVSTrop: status and recommendations of the IVS rapid troposphere combination. In: Bourda G, Charlot P, and Collioud A (eds) Proceedings of the 19th EVGA Working Meeting. Université Bordeaux 1—CNRS, Observatoire Aquitain des Sciences de l’Univers, Laboratoire d’Astrophysique de Bordeaux, pp 180–182Google Scholar
  18. Heinkelmann R, Böhm J, Schuh H (2005) Homogenization of surface pressure recordings and its impact on long-term series of VLBI tropospheric parameters. In: Vennebusch M, Nothnagel A (eds) Proceedings of the 17th EVGA Working Meeting. INAF—Istituto di Radioastronomia—Sezione di NOTO—Italy, pp 74–78Google Scholar
  19. Heinkelmann R, Böhm J, Schuh H, Bolotin S, Engelhardt G, MacMillan DS, Negusini M, Skurikhina E, Tesmer V, Titov O (2007) Combination of long time-series of troposphere zenith delays observed by VLBI. J Geod 81(6–8): 483–501CrossRefGoogle Scholar
  20. Heinkelmann R, Böhm J, Schuh H, Tesmer V (2009) The influence of meteorological input data on the VLBI reference frames. In: Drewes H (ed.) Geodetic Reference Frames, International Association of Geodesy Symposium 134. Springer, Berlin, pp 245–251Google Scholar
  21. IERS: (2004) IERS Conventions (2003). In: McCarthy DD, Petit G (eds) IERS Technical Note No 32. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  22. Jin S, Wu Y, Heinkelmann R, Park J (2008) Diurnal and semidiurnal atmospheric tides observed by co-located GPS and VLBI measurements. J Atmos Solar-Terr Phys 70(2008): 1366–1372CrossRefGoogle Scholar
  23. Koch KR (1997) Parameterschätzung und Hypothesentests, 3rd edition. Dümmler, BonnGoogle Scholar
  24. Kusche J (2003) A Monte-Carlo technique for weight estimation in satellite geodesy. J Geod 76: 641–652CrossRefGoogle Scholar
  25. Kutterer H (2004) Reliability measures for geodetic VLBI products. In: Vandenberg NR, Baver KD (eds) IVS 2004 General Meeting Proceedings, NASA/CP–2004–212255, pp 301–305Google Scholar
  26. Kutterer H, Heinkelmann R, Tesmer V (2003) Robust outlier detection in VLBI data analysis. In: Schwegmann W, Thorandt V (eds) Proceedings of the 16th EVGA Working Meeting. Verlag des Bundesamts für Kartographie und Geodäsie, Leipzig Frankfurt am Main, pp 247–256Google Scholar
  27. Kutterer H, Krügel M, Tesmer V (2009) Towards an improved assessment of the quality of terrestrial reference frames geodetic reference frames.. In: Drewes H (eds) International Association of Geodesy Symposia, vol 134. Springer, Berlin, pp 67–72. doi: 10.1007/978-3-642-00860-3_10 Google Scholar
  28. MacMillan DS (1995) Atmospheric gradients from very long baseline interferometry observations. Geophys Res Let 22(9): 1041– 1044CrossRefGoogle Scholar
  29. MacMillan DS, Ma C (1998) Using meteorological data assimilation models in computing tropospheric delays at microwave frequencies. Phys Chem Earth 23(1): 97–102CrossRefGoogle Scholar
  30. Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelength. J Geophys Res 101(B2): 3227–3246CrossRefGoogle Scholar
  31. Nothnagel A, Vennebusch M, Campbell J (2002) On correlations between parameters in geodetic VLBI data analysis. In: Vandenberg NR, Baver KD (eds) IVS 2002 General Meeting Proceedings, NASA/CP–2002–210002, pp 260–264Google Scholar
  32. Plank L, Böhm J, Schuh H (2010) Comparison Campaign of VLBI data analysis software—first results. In: Behrend D, Baver KD (eds) IVS 2010 General Meeting Proceedings (in press)Google Scholar
  33. Schuh H, Böhm J (2003) IVS Pilot Project—tropospheric parameters. Österreichische Zeitschrift für Vermessung und Geoinformation VGI(91) 01: 14–20Google Scholar
  34. Schlüter W, Behrend D (2007) The International VLBI Service for Geodesy and Astrometry (IVS): current capabilities and future prospects. J Geod 81(6-8): 379–387CrossRefGoogle Scholar
  35. Steinforth C, Nothnagel A (2004) Considering a priori correlations in the IVS combined EOP series. In: Vandenberg NR, Baver KD (eds) IVS 2004 General Meeting Proceedings, NASA/CP–2004–212255, pp 413–417Google Scholar
  36. Teke K, Böhm J, Nilsson T, Schuh H, Steigenberger P, Dach R, Heinkelmann R, Willis P, Haas R, Garcia Espada S, Hobiger T, Ichikawa R, Shimizu S (2011) Multi-technique comparison of troposphere zenith delays and gradients during CONT08. J Geod. doi: 10.1007/s00190-010-0434-y
  37. Tesmer V (2004) Das stochastische Modell bei der VLBI-Auswertung. DGK Reihe C, Dissertationen, Heft Nr. 573, ISBN 3 7696 5012 3, Verlag der Bayerischen Akademie der Wissenschaften in Kommission beim Verlag C. H. Beck, München, p 105Google Scholar
  38. Titov O, Schuh H (2000) Short periods in Earth rotation seen in VLBI data analysed by the least-squares collocation method. IERS Technical Note No. 28, Observatoire de Paris, Paris, pp 33–41Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • R. Heinkelmann
    • 1
    Email author
  • J. Böhm
    • 2
  • S. Bolotin
    • 3
  • G. Engelhardt
    • 4
  • R. Haas
    • 5
  • R. Lanotte
    • 6
  • D. S. MacMillan
    • 3
  • M. Negusini
    • 7
  • E. Skurikhina
    • 8
  • O. Titov
    • 9
  • H. Schuh
    • 2
  1. 1.Deutsches Geodätisches Forschungsinstitut (DGFI)MunichGermany
  2. 2.Institute of Geodesy and Geophysics (IGG)Vienna University of TechnologyViennaAustria
  3. 3.NVI Inc. and NASA/Goddard Space Flight Center (GSFC)GreenbeltUSA
  4. 4.Bundesamt für Kartographie und Geodäsie (BKG)LeipzigGermany
  5. 5.Department of Earth and Space ScienceChalmers University of Technology, Onsala Space Observatory (OSO)OnsalaSweden
  6. 6.Centro di Geodesia Spaziale (CGS)MateraItaly
  7. 7.Istituto di Radioastronomia, Istituto Nazionale di Astrofisica (INA)BolognaItaly
  8. 8.Institute of Applied Astronomy (IAA)St. PetersburgRussia
  9. 9.Geoscience Australia (AUS)CanberraAustralia

Personalised recommendations