Journal of Geodesy

, 85:425 | Cite as

High-resolution atmospheric angular momentum functions related to Earth rotation parameters during CONT08

  • Michael Schindelegger
  • Johannes Böhm
  • David Salstein
  • Harald Schuh
Original Article


Due to the temporal resolution of available numerical weather analyses, the effect of the atmosphere on Earth rotation at daily and sub-daily periods is usually investigated using 6-hourly atmospheric angular momentum (AAM) functions. During the period of CONT08, however, atmospheric analysis data were provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) also on an hourly basis. In this paper, we, therefore, determine two sets of AAM functions from ECMWF data—one for CONT08 with hourly resolution and one for the year 2008 with 6-hourly resolution. The comparisons of the AAM functions to high-resolution Earth rotation parameters (ERP) from VLBI and GPS observations are carried out in the frequency domain. Special attention is paid to the preparation of the high-resolution data sets for the geodetic purposes, as there are jump discontinuities at 12 h intervals. Hence, the hourly AAM functions need to be concatenated. The revised functions yield much smaller amplitudes than their 6-hourly counterparts, as can be seen from the equatorial and the axial frequency spectra of atmospheric excitation in Earth rotation. This decrease of spectral power in the hourly AAM functions is found to be associated with a strong counteraction of pressure and wind terms, which originates from atmospheric circulation on short time scales. The results are compared to previous findings published by Brzeziński and Petrov (IERS Tech Note 28:53–60, 2000) based on the data from the U.S. National Centers for Environmental Prediction (NCEP).


Earth rotation Atmospheric angular momentum High-frequency excitation of Earth rotation 


  1. Artz T, Böckmann S, Nothnagel A, Steigenberger P (2010) Sub-diurnal variations in the Earth’s rotation from continuous Very Long Baseline Interferometry campaigns. J Geophys Res 115: B05404. doi: 10.1029/2009JB006834 CrossRefGoogle Scholar
  2. Barnes R, Hide R, White A, Wilson C (1983) Atmospheric angular momentum fluctuations, length-of-day changes and polar motion. Proc R Soc Lond A 387: 31–73CrossRefGoogle Scholar
  3. Bizouard C, Brzeziński A, Petrov S (1998) Diurnal atmospheric forcing and temporal variations of the nutation amplitudes. J Geod 72: 561–577CrossRefGoogle Scholar
  4. Böhm J, Spicakova H, Plank L, Teke K, Pany A, Wresnik J, Englich S, Nilsson T, Schuh H, Hobiger T, Ichikawa R, Koyama Y, Gotoh T, Kubooka T, Otsubo T (2009) Plans for the Vienna VLBI Software VieVS. In: Bourda G, Charlot P, Collioud A (eds) Proceedings of the 19th European VLBI for Geodesy and Astrometry Working Meeting, pp 161–164Google Scholar
  5. Brzeziński A (1994) Polar motion excitation by variations of the effective angular momentum function, II: Extended model. Manuscr Geod 19: 157–171Google Scholar
  6. Brzeziński A, Bizouard C, Petrov SD (2002) Influence of the atmosphere on Earth rotation: What new can be learned from the recent atmospheric angular momentum estimates?. Surv Geophys 23: 33–69CrossRefGoogle Scholar
  7. Brzeziński A, Petrov S (2000) High frequency atmospheric excitation of Earth rotation. IERS Tech Note 28: 53–60Google Scholar
  8. Chao B, Ray R, Gipson J, Egbert G, Ma C (1996) Diurnal/semidiurnal polar motion excited by oceanic tidal angular momentum. J Geophys Res 101(B9): 20151–20163CrossRefGoogle Scholar
  9. Dickman SR (2003) Evaluation of “effective angular momentum function” formulations with respect to core-mantle coupling. J Geophys Res 108(B3): 2150. doi: 10.1029/2001JB001603 CrossRefGoogle Scholar
  10. Dickman SR (2005) Rotationally consistent Love numbers. Geophys J Int 161: 31–40CrossRefGoogle Scholar
  11. Eubanks TM (1993) Variations in the orientation of the Earth. In: Smith D, Turcotte D (eds) Contributions of Space Geodesy to Geodynamics: Earth dynamics, vol 24. American Geophysical Union, Washington, pp 1–54Google Scholar
  12. Gordon D, MacMillan D, Baver K (2006) Calc 10 implementation. In: Behrend D, Baver K (eds) International VLBI Service for Geodesy and Astrometry 2006 General Meeting Proceedings, pp 291–295Google Scholar
  13. Gross RS (2007) Earth rotation variations - long period. In: Herring TA (ed.) Treatise on Geophysics, Vol 3. Elsevier, Geodesy, pp 239–294CrossRefGoogle Scholar
  14. Haas R, Wünsch J (2006) Sub-diurnal Earth rotation variations from the VLBI CONT02 campaign. J Geodyn 41: 94–99. doi: 10.1016/j.jog.2005.08.025 CrossRefGoogle Scholar
  15. Mathews PM, Herring TA, Buffett BA (2002) Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Earth’s interior. J Geophys Res 107(B4): 2068. doi: 10.1029/2001JB000390 CrossRefGoogle Scholar
  16. McCarthy DD, Petit G (2004) IERS Conventions 2003. IERS Technical Note No. 32, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  17. Moritz H, Mueller II (1987) Earth rotation: theory and observation. Ungar, New YorkGoogle Scholar
  18. Munk WH, MacDonald GJF (1960) The Rotation of the Earth. A geophysical discussion. Cambridge University Press, New YorkGoogle Scholar
  19. Perrson A, Grazzini F (2007) User guide to ECMWF forecast products., as at March 2007
  20. Ray RD, Steinberg DJ, Chao BF, Cartwright DE (1994) Diurnal and semidiurnal variations in the Earth’s rotation rate induced by oceanic tides. Science 264(5160): 830–832. doi: 10.1126/science.264.5160.830 CrossRefGoogle Scholar
  21. Salstein DA, Kann DM, Miller AJ, Rosen RD (1993) The sub-bureau for atmospheric angular momentum of the International Earth Rotation Service: a meteorological data center with geodetic applications. Bull Am Meteorol Soc 74: 67–80CrossRefGoogle Scholar
  22. Sasao T, Wahr JM (1981) An excitation mechanism for the free ‘core nutation’. Geophys J R Astr Soc 64: 729–746Google Scholar
  23. Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111: B05402. doi: 10.1029/2005JB003747 CrossRefGoogle Scholar
  24. Vondrák J, Ron C (2007) Quasi-diurnal atmospheric and oceanic excitation of nutation. Acta Geodyn Geomater 148: 121–128Google Scholar
  25. Wahr JM (1982) The effects of the atmosphere and oceans on the Earth’s wobble—I. Theory Geophys J R Astr Soc 70: 349–372Google Scholar
  26. Wahr JM (2005) Polar motion models: Angular momentum approach. In: Plag HP, Chao BF, Gross RS, van Dam T (eds) Forcing of polar motion in the Chandler frequency band: a contribution to understanding interannual climate change. vol 24. Cahiers du Centre Européen de Géodynamique et du Séismologie, Luxembourg, pp 1–7Google Scholar
  27. Zharov VE, Gambis D (1996) Atmospheric tides and rotation of the Earth. J Geod 70: 321–326Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Michael Schindelegger
    • 1
  • Johannes Böhm
    • 1
  • David Salstein
    • 2
  • Harald Schuh
    • 1
  1. 1.Institute of Geodesy and GeophysicsVienna University of TechnologyViennaAustria
  2. 2.Atmospheric and Environmental Research Inc.LexingtonUSA

Personalised recommendations