Journal of Geodesy

, Volume 85, Issue 8, pp 539–550 | Cite as

4D GPS water vapor tomography: new parameterized approaches

  • Donat PerlerEmail author
  • Alain Geiger
  • Fabian Hurter
Original Article


Water vapor is a key variable in numerical weather prediction, as it plays an important role in atmospheric processes. Nonetheless, the distribution of water vapor in the atmosphere is observed with a coarse resolution in time and space compared to the resolution of numerical weather models. GPS water vapor tomography is one of the promising methods to improve the resolution of water vapor measurements. This paper presents new parameterized approaches for the determination of water vapor distribution in the troposphere by GPS. We present the methods and give first results validating the approaches. The parameterization of voxels (volumetric pixels) by trilinear and spline functions in ellipsoidal coordinates are introduced in this study. The evolution in time of the refractivity field is modeled by a Kalman filter with a temporal resolution of 30 s, which corresponds to the available GPS-data rate. The algorithms are tested with simulated and with real data from more than 40 permanent GPS receiver stations in Switzerland and adjoining regions covering alpine areas. The investigations show the potential of the new parameterized approaches to yield superior results compared to the non parametric classical one. The accuracy of the tomographic result is quantified by the inter-quartile range (IQR), which is decreased by 10–20% with the new approaches. Further, parameterized voxel solutions have a substantially smaller maximal error than the non parameterized ones. Simulations show a limited ability to resolve vertical structures above the top station of the network with GPS tomography.


GPS GPS meteorology Water vapor Tomography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bastin S, Champollion C, Bock O, Drobinski P, Masson F (2007) Diurnal cycle of water vapor as documented by a dense GPS network in a coastal area during ESCOMPTE IOP2. Bull Am Meteorol Soc 46: 167–182Google Scholar
  2. Buzzi M (2008) Challenges in operational numerical weather prediction at high resolution in complex terrain. Ph.D. thesis, ETH ZurichGoogle Scholar
  3. Champollion C, Masson F, Bouin M-N, Walpersdorf A, Doerflinger E, Bock O, van Baelen J (2005) GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment. Atmos Res 74: 253–274CrossRefGoogle Scholar
  4. Clark KM (2002) The use of computer modeling in estimating and managing future catastrophe losses. Geneva Papers Risk Insurance 27: 181–195CrossRefGoogle Scholar
  5. Clark P (2009) Issues with high-resolution NWP. MOSAC-14 14.6, UK MetOffice. 12–13 NovemberGoogle Scholar
  6. Dach, R, Hugentobler, U, Fridez, P, Meindl, M (eds) (2007) Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, BernGoogle Scholar
  7. Dankers R, Feyen L, Chrstensen OB (2009) On the benefit of high-resolution climate simulations in impact studies of hydrological extremes. Hydrol Earth Syst Sci Discussions 6: 2573–2597CrossRefGoogle Scholar
  8. Falconer RH, Cobby D, Smyth P, Astle G, Dent J, Golding B (2009) Pluvial flooding: new approaches in flood warning, mapping and risk management. J. Flood Risk Manage. 2: 198–208CrossRefGoogle Scholar
  9. Flores A, de Arellano JV-G, Gradinarsky LP, Rius A (2001) Tomography of the lower troposphere using a small dense network of GPS receivers. IEEE Trans Geosci Remote Sensing 39(2): 439–447CrossRefGoogle Scholar
  10. Flores A, Gradinarsky LP, Elósegui P, Elgered G, Davis JL, Rius A (2000) Sensing atmospheric structure: tropospheric tomographic results of the small-scale GPS campaign at the Onsala Space Observatory. Earth Planets Space 52: 941–945Google Scholar
  11. Flores A, Ruffini G, Rius A (2000) 4D tropospheric tomography using GPS slant wet delays. Ann Geophys 18: 223–234CrossRefGoogle Scholar
  12. Fujiwara M, Shiotani M, Hasebe F, Voemel H, Oltmans SJ, Ruppert PW, Horinouchi T, Tsuda T (2003) Performance of the meteolabor Snow White chilled-mirror hygrometer in the tropical troposphere: Comparisons with the Vaisala RS80 A/H-Humicap sensors. J Atmos Oceanic Technol 20: 1534–1542CrossRefGoogle Scholar
  13. Gelb A (1974) Applied optimal estimation. MIT Press, CambridgeGoogle Scholar
  14. Gradinarsky LP, Jarlemark P (2004) Ground-based GPS tomography of water vapor: analysis of simulated and real data. J Meteor Soc Jpn 82(1B): 551–560CrossRefGoogle Scholar
  15. Hirahara K (2000) Local GPS tropospheric tomography. Earth Planets Space 52: 935–939Google Scholar
  16. Jacob D, Brring L, Christensen O, Christensen J, de Castro M, Dqu M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellstrm E, Lenderink G, Rockel B, Snchez E, Schr C, Seneviratne S, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52. doi: 10.1007/s10584-006-9213-4 Google Scholar
  17. Jehle M, Perler D, Small D, Schubert A, Meier E (2008) Estimation of atmospheric path delays in TerraSAR-X data using models vs. measurements. Sensors 8(12): 8479–8491CrossRefGoogle Scholar
  18. Lutz S (2009) High-resolution GPS tomography in view of hydrological hazard assessment. Geodätisch-geophysikalische Arbeiten in der Schweiz. vol 76. Swiss Geodetic CommissionGoogle Scholar
  19. Lutz S, Troller M, Perler D, Geiger A, Kahle HG (2010) Better weather prediction using GPS. GPS World 21(7): 40–47Google Scholar
  20. Miloshevich LM, Voemel H, Paukkunen A, Heymsfield WJ, Oltmans SSJ (2001) Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures. J Atmos Oceanic Technol 18: 135–156CrossRefGoogle Scholar
  21. Nash J, Elms JB, Oakley TJ (1995) Relative humidity sensor performance observed in recent international radiosonde comparisons. In: Ninth AMS Symposium on Meteorological Observations and Instrumentation. Charlotte, North Carolina, pp 43–48Google Scholar
  22. Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101: 3227–3246CrossRefGoogle Scholar
  23. Nilsson T (2005) Assessment of tomographic methods for estimation of atmospheric water vapor using ground-based GPS. Licentiate thesis, Chalmers University of Technology, Göteborg, SwedenGoogle Scholar
  24. Nilsson T, Gradinarsky L (2006) Water vapor tomography using GPS phase observations: simulation results. IEEE Trans Geosci Remote Sensing 44(10): 2927–2941CrossRefGoogle Scholar
  25. Perler D (2011) Parameterized GPS-tomography for assimilation in numerical weather prediction models. Geodätisch-geophysikalische Arbeiten in der Schweiz. Swiss Geodetic Commission (in preparation)Google Scholar
  26. Pilon PJ (2005) Guidelines for reducing flood losses. United NationsGoogle Scholar
  27. Ranzi R, Bacchi B, Ceppi A, Cislaghi M, Ehret U, Jaun S, Marx A, Hegg C, Zappa M (2009) Real-time demonstration of hydrological ensemble forecasts in Map d-Phase. La Houille Blanche, pp 95–104Google Scholar
  28. Rice JA (1995) Mathematical statistics and data analysis, 2 edn. Duxbury Press, North ScituateGoogle Scholar
  29. Rüeger JM (2002) Refractive index formulae for radio waves. In: Integration of techniques and corrections to achieve accurate engineeringGoogle Scholar
  30. Ruffini G, Flores A, Rius A (1998) GPS tomography of the ionospheric electron content with a correlation functional. IEEE Trans Geosci Remote Sensing 36(1)Google Scholar
  31. Saastamoinen J (1972) Atmospheric correction for troposphere and stratosphere in radio ranging of satellites. In: Henriksen SW, Macini A, Chovitz BH (eds) The use of artificial satellites for geodesy. Geophysics monograph, vol 15. American Geophysical Union, Washington D.C., pp 247–251Google Scholar
  32. Schwarz HR (1997) Numerische Mathematik, 4 edn. Teubner, StuttgartGoogle Scholar
  33. Stoer J, Bulirsch R (1980) Introduction to numerical analysis. Springer, New YorkGoogle Scholar
  34. Troller M (2004) GPS based determination of the integrated and spatially distributed water vapor in the troposphere. Geodätisch-geophysikalische Arbeiten in der Schweiz, vol 67. Swiss Geodetic CommissionGoogle Scholar
  35. Troller M, Bürki B, Cocard M, Geiger A, Kahle H-G (2002) 3-D refractivtiy field from GPS double difference tomography. Geophys Res Lett 29(24)Google Scholar
  36. Troller M, Geiger A, Brockmann E, Kahle H-G (2006) Determination of the spatial and temporal variation of tropospheric water vapour using CGPS networks. Geophys J Int 167(2): 509–520CrossRefGoogle Scholar
  37. Troller M, Leuenberger D, Brockmann E, Geiger A, Kahle H-G (2007) GPS-tomography: results and analyses of the operational determination of humidity profiles over Switzerland. Geophys Res Abstr 9Google Scholar
  38. Vömel H, Fujiwara M, Shiotani M, Hasebe F, Oltmans SJ, Barnes JE (2003) The behavior of the snow white chilled-mirror hygrometer in extremely dry conditions. J Atmos Oceanic Technol 20: 1560–1567CrossRefGoogle Scholar
  39. Wang J, Cole HL, Carlson DJ, Miller ER, Beierle K, Laine TK (2002) Corrections of humidity measurement errors from the Vaisala RS80 radiosonde—application to TOGA COARE data. J Atmos Oceanic Technol 19: 981–1002CrossRefGoogle Scholar
  40. Wanner H (1979) Zur Bildung, Verteilung und Vorhersage winterlicher Nebel im Querschnitt Jura–Alpen. Geogr. Bernensia 7, 240p GGoogle Scholar
  41. WMO: (2008) Guide to meteorological instruments and methods of observation, 7th edn. World Meteorological Organization-8, GenevaGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Geodesy and Geodynamics Laboratory, Institute of Geodesy and PhotogrammetryETH ZurichZurichSwitzerland

Personalised recommendations