Journal of Geodesy

, Volume 85, Issue 8, pp 475–485 | Cite as

Transverse Mercator with an accuracy of a few nanometers

  • Charles F. F. KarneyEmail author
Original Article


Implementations of two algorithms for the transverse Mercator projection are described; these achieve accuracies close to machine precision. One is based on the exact equations of Thompson and Lee and the other uses an extension of Krüger’s series for the mapping to higher order. The exact method provides an accuracy of 9 nm over the entire ellipsoid, while the errors in the series method are less than 5 nm within 3900 km of the central meridian. In each case, the meridian convergence and scale are also computed with similar accuracy. The speed of the series method is competitive with other less accurate algorithms and the exact method is about five times slower.


Geometrical geodesy Map projections Conformal mapping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bugayevskiy LM, Snyder JP (1995) Map projections: a reference manual. Taylor & Francis, LondonGoogle Scholar
  2. Bulirsch R (1965) Numerical calculation of elliptic integrals and elliptic functions. Numer Math 7(1): 78–90. doi: 10.1007/BF01397975 CrossRefGoogle Scholar
  3. Carlson BC (1995) Numerical computation of real or complex elliptic integrals. Numer Algorithms 10(1): 13–26. doi: 10.1007/BF02198293, E-print arXiv:math/9409227CrossRefGoogle Scholar
  4. Clenshaw CW (1955) A note on the summation of Chebyshev series. Math Tables Aids Comput 9(51):118–120. URL Google Scholar
  5. Dozier J (1980) Improved algorithm for calculation of UTM and geodetic coordinates. Tech. Rep. NESS 81. NOAA.
  6. Engsager KE, Poder K, (2007) A highly accurate world wide algorithm for the transverse Mercator mapping (almost). In: Proceedings of XXIII international cartographic conference (ICC2007), Moscow, p 2.1.2Google Scholar
  7. Geotrans (2010) Geographic translator, version 3.0.
  8. Hager JW, Behensky JF, Drew BW (1989) The universal grids: Universal Transverse Mercator (UTM) and Universal Polar Stereographic (UPS). Tech. Rep. TM 8358.2, Defense Mapping Agency.
  9. Karney CFF (2010) GeographicLib, version 1.7.
  10. König R, Weise KH (1951) Mathematische Grundlagen der Höheren Geodäsie und Kartographie, vol 1. Springer, BerlinGoogle Scholar
  11. Krüger JHL (1912) Konforme Abbildung des Erdellipsoids in der Ebene. New Series 52. Royal Prussian Geodetic Institute, Potsdam. doi: 10.2312/GFZ.b103-krueger28
  12. Kuittinen R, Sarjakoski T, Ollikainen M, Poutanen M, Nuuros R, Tätilä P, Peltola J, Ruotsalainen R, Ollikainen M (2006) ETRS89—järjestelmä än liittyvät karttaprojektiot, tasokoordinaatistot ja karttalehtijako. Tech. Rep. JHS 154. Finnish Geodetic Institute., Appendix 1, Projektiokaavart
  13. Lagrange JL (1770) Nouvelle méthode pour résoudre les équations littérales par le moyen des séries. In: Oeuvres, vol 3. Gauthier-Villars, Paris (1869), pp 5–73. reprint of Mém. de l’Acad. Roy. des Sciences de Berlin 24:251–326
  14. Lambert JH (1772) Anmerkungen und Zusätze zur Entwerfung der Land- und Himmelscharten. No. 54 in Klassiker ex. Wiss., Engelmann, Leipzig (1894)., translated into English by W. R. Tobler as Notes and Comments on the Composition of Terrestrial and Celestial Maps, University of Michigan (1972)
  15. Lee LP (1976) Conformal projections based on Jacobian elliptic functions. Cartographica 13(1, Monograph 16): 67–101. doi: 10.3138/X687-1574-4325-WM62 Google Scholar
  16. Ludwig K (1943) Die der transversalen Mercatorkarte der Kugel entsprechende Abbildung des Rotationsellipsoids. J Reine Angew Math 185(4): 193–230. doi: 10.1515/crll.1943.185.193,
  17. Maxima (2009) A computer algebra system, version 5.20.1.
  18. Olver FWJ, Lozier DW, Boisvert RF, Clark CW (eds) (2010) NIST Handbook of mathematical functions. Cambridge University Press, Cambridge.
  19. Stuifbergen N (2009) Wide zone transverse Mercator projection. Tech. Rep. 262. Canadian Hydrographic Service.
  20. Thomas PD (1952) Conformal projections in geodesy and cartography. Special Publication 251. US Coast and Geodetic Survey.
  21. Wallis DE (1992) Transverse Mercator projection via elliptic integrals. Tech. Rep. NPO-17996. JPLGoogle Scholar
  22. Whittaker ET, Watson GN (1927) A course of modern analysis, 4th edn. Cambridge University Press, reissued in Cambridge Math. Library Series (1996)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.SRI InternationalPrincetonUSA

Personalised recommendations