Journal of Geodesy

, Volume 85, Issue 6, pp 357–365 | Cite as

Precise orbit determination of GIOVE-B based on the CONGO network

  • P. SteigenbergerEmail author
  • U. Hugentobler
  • O. Montenbruck
  • A. Hauschild
Original Article


GIOVE-B is one of two test satellites for the future European Global Navigation Satellite System Galileo. The Cooperative Network for GIOVE Observation (CONGO) is a global tracking network of GIOVE-capable receivers established by Deutsches Zentrum für Luft- und Raumfahrt (DLR) and Bundesamt für Kartographie und Geodäsie (BKG). This network provides the basis for the precise orbit determination of the GIOVE-B satellite for the time period 29 June till 27 October 2009 with a modified version of the Bernese GPS Software. Different arc lengths and sets of orbit parameters were tested. These tests showed that the full set of nine radiation pressure parameters resulted in a better performance than the reduced set of five parameters. An internal precision of about one to two decimeters could be demonstrated for the central day of 5-day solutions. The orbit predictions have a precision of about 1 m for a prediction period of 24 h. External validations with Satellite Laser Ranging (SLR) show residuals on the level of 12 cm. The accuracy of the final orbits is expected to be on the few decimeter level.


Satellite orbits Global Navigation Satellite System (GNSS) Galileo CONGO POD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker M, Zeimetz P, Schönemann E (2010) Antenna chamber calibrations and antenna phase center variations for new and existing GNSS signals. In: IGS Workshop 2010, 28 June–2 July 2010, NewcastleGoogle Scholar
  2. Benedicto J, Gatti G, Garutti A, Paffet J, Bradford A, Jackson C, Rooney E (2006) The triumph of GIOVE-A - the first Galileo satellite. ESA Bull 127: 62–69Google Scholar
  3. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE Processing Center of the International GPS Service (IGS): Theory and initial results. Manuscr Geod 19: 367–386Google Scholar
  4. Beutler G, Brockmann E, Mervart L, Rothacher M, Weber R (1996) Combining consecutive short arcs into long arcs for precise and efficient GPS orbit determination. J Geod 70(5): 287–299. doi: 10.1007/BF00867349 Google Scholar
  5. Bock H, Dach R, Jäggi A, Beutler G (2009) High-rate GPS clock corrections from CODE: support of 1 Hz applications. J Geod 83(11): 1083–1094. doi: 10.1007/s00190-009-0326-1 CrossRefGoogle Scholar
  6. Cao W, Hauschild A, Steigenberger P, Langley R, Urquhart L, Santos M, Montenbruck O (2010) GPS/GIOVE integrated precise point positioning performance evaluation. In: Proceedings of ION ITM 2010, pp 540–552Google Scholar
  7. Dach, R, Hugentobler, U, Fridez, P, Meindl, M (eds) (2007) Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, BernGoogle Scholar
  8. Dow J, Neilan R, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3-4): 191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  9. Falcone M, Navarro-Reyes D, Hahn J, Otten M, Piriz R, Pearlman M (2006) GIOVE’s Track. GPS World 17(11): 34–37Google Scholar
  10. García ÁM, Píriz R, Fernández V, Navarro-Reyes D, González F, Hahn J (2009) GIOVE orbit and clock determination and prediction: experimentation results. In: Proceedings of the European Navigation Conference - Global Navigation Satellite Systems.
  11. Giraud J, Borrel V, Crisci M (2009) Latest achievements in GIOVE signal and sensor station experimentations. In: Proceedings of ION GNSS 2009, pp 3025–3036Google Scholar
  12. GPS World (2008) JAVAD GNSS unveils new survey products. GPS World 19(3):28Google Scholar
  13. Gurtner W, Estey L (2007) RINEX, the receiver independent exchange format, Version 3.00. Technical report.
  14. Hauschild A, Montenbruck O (2008) Real-time clock estimation for precise orbit determination of LEO-satellites. In: Proceedings of ION GNSS 2008, pp 581–589Google Scholar
  15. Kirchner M, Schmidt R, Vilzmann J (2009) Results of GIOVE data processing to allow evaluation of principal system performance drivers. In: Proceedings of the European Navigation Conference - Global Navigation Satellite Systems.
  16. Kraft B (2009) Orbit and clock determination of the GIOVE satellites from SLR and GNSS measurements. Diplomarbeit, Lehrstuhl für Raumfahrttechnik, Technische Universität MünchenGoogle Scholar
  17. Luceri V, Bianco G (2007) The temporary ILRS reference frame: SLRF2005. In: ILRS Fall Meeting, 24–28 September 2007, Grasse.
  18. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6): 394–415. doi: 10.1007/s10236-006-0086-x CrossRefGoogle Scholar
  19. Malik M, Gatti G, Alpe V, Johansson M, Kieffer R, Robertson G (2009) GIOVE-B satellite & payload overview. In: Proceedings of the European Navigation Conference - Global Navigation Satellite Systems.
  20. Marini J (1972) Correction of satellite tracking data for an arbitrary tropospheric profile. Radio Sci 7(2): 223–231. doi: 10.1029/RS007i002p00223 CrossRefGoogle Scholar
  21. McCarthy D, Petit G (2004) IERS Conventions (2003). IERS technical note 32, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  22. Montenbruck O, Hauschild A, Hessels U, Steigenberger P, Hugentobler U (2009) CONGO - first GPS/GIOVE tracking network for science, research. GPS World 20(9): 56–62Google Scholar
  23. Montenbruck O, Hauschild A, Hessels U (2010) Characterization of GPS/GIOVE sensor stations in the CONGO network. GPS Sol. doi: 10.1007/s10291-010-0182-8
  24. Pearlman MR, Degnan JJ, Bosworth JM (2002) The International Laser Ranging Service. Adv Space Res 30(2): 125–143. doi: 10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  25. Scherneck HG (1991) A parametrized solid Earth tide model and ocean loading effects for global geodetic base-line measurements. Geophys J Int 106(3): 677–694. doi: 10.1111/j.1365-246X.1991.tb06339.x CrossRefGoogle Scholar
  26. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12): 781–798. doi: 10.1007/s00190-007-0148-y CrossRefGoogle Scholar
  27. Schönemann E, Springer T, Otten M, Becker M, Dow J (2007) GIOVE-A precise orbit determination from microwave and satellite laser ranging data - first perspectives for the Galileo constellation and its scientific use. In: Proceedings of the first colloquium on scientific and fundamental aspects of the Galileo Programme 2007Google Scholar
  28. Simsky A, Sleewaegen JM, Wilde WD, Wilms F (2007) Overview of Septentrios Galileo receiver development strategy. In: Proceedings of ION GNSS 2007, pp 1888–1895Google Scholar
  29. Svehla D, Heinze M, Rothacher M, Steigenberger P, Dähnn M, Kirchner M (2008) Combined processing of GIOVE-A and GPS measurements using zero- and double-differences. Geophys Res Abstr 10. sRef-ID: 1607-7962/gra/EGU2008-A-11383Google Scholar
  30. Urschl C, Beutler G, Gurtner W, Hugentober U, Ploner M (2008) Orbit determination for GIOVE-A using SLR tracking data. In: Luck J, Moore C, Wilson P (ed) Extending the range. Proceedings of the 15th International Workshop on Laser Ranging, pp 40–46.
  31. Weber G, Dettmering D, Gebhard H, Kalafus R (2005) Networked transport of RTCM via Internet Protocol (Ntrip) - IP-streaming for real-time GNSS applications. In: Proceedings of ION GNSS 2005, pp 2243–2247Google Scholar
  32. Zandbergen R, Navarro D (2009) Specification of Galileo and GIOVE space segment properties relevant for Satellite Laser Ranging. Tech. Rep. ESA-EUING-TN/10206, rev. 3.2. European Space AgencyGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • P. Steigenberger
    • 1
    Email author
  • U. Hugentobler
    • 1
  • O. Montenbruck
    • 2
  • A. Hauschild
    • 2
  1. 1.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMünchenGermany
  2. 2.German Space Operations CenterDeutsches Zentrum für Luft- und RaumfahrtWeßlingGermany

Personalised recommendations