Journal of Geodesy

, Volume 85, Issue 5, pp 291–310 | Cite as

Vertical deformations from homogeneously processed GRACE and global GPS long-term series

  • Volker TesmerEmail author
  • Peter Steigenberger
  • Tonie van Dam
  • Torsten Mayer-Gürr
Original Article


Temporal variations in the geographic distribution of surface mass cause surface displacements. Surface displacements derived from GRACE gravity field coefficient time series also should be observed in GPS coordinate time series, if both time series are sufficiently free of systematic errors. A successful validation can be an important contribution to climate change research, as the biggest contributors to mass variability in the system Earth include the movement of oceanic, atmospheric, and continental water and ice. In our analysis, we find that if the signals are larger than their precision, both geodetic sensor systems see common signals for almost all the 115 stations surveyed. Almost 80% of the stations have their signal WRMS decreased, when we subtract monthly GRACE surface displacements from those observed by GPS data. Almost all other stations are on ocean islands or small peninsulas, where the physically expected loading signals are very small. For a fair comparison, the data (79 months from September 2002 to April 2009) had to be treated appropriately: the GPS data were completely reprocessed with state-of-the-art models. We used an objective cluster analysis to identify and eliminate stations, where local effects or technical artifacts dominated the signals. In addition, it was necessary for both sets of results to be expressed in equivalent reference frames, meaning that net translations between the GPS and GRACE data sets had to be treated adequately. These data sets are then compared and statistically analyzed: we determine the stability (precision) of GRACE-derived, monthly vertical deformation data to be ~1.2 mm, using the data from three GRACE processing centers. We statistically analyze the mean annual signals, computed from the GPS and GRACE series. There is a detailed discussion of the results for five overall representative stations, in order to help the reader to link the displayed criteria of similarity to real data. A series of tests were performed with the goal of explaining the remaining GPS–GRACE residuals.


Satellite geodesy Earth system GRACE GPS Mass transport Surface deformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res 112: B09401. doi: 10.1029/2007JB004949 CrossRefGoogle Scholar
  2. Bettadpur S (2007) Gravity recovery and climate experiment, UTCSR level-2 processing standards document for level-2 product release 004. Technical report, CSR Publication, GR-03-03Google Scholar
  3. Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J Geophys Res 108(B2): 2103. doi: 10.1029/2002JB002082 CrossRefGoogle Scholar
  4. Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111: B02406. doi: 10.1029/2005JB003629 CrossRefGoogle Scholar
  5. Cazenave A, Llovel W (2010) Contemporary sea level rise. Ann Rev Mar Sci 2: 145–173CrossRefGoogle Scholar
  6. Chambers DP (2006) Observing seasonal steric sea level variations with GRACE and satellite altimetry. J Geophys Res (Oceans) 111(C10): C3010. doi: 10.1029/2005JC002914 CrossRefGoogle Scholar
  7. Chen JL, Wilson CR, Tapley BD (2006) Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science 313: 1958–1960. doi: 10.1126/science.1129007 CrossRefGoogle Scholar
  8. Chen JL, Wilson CR, Blakenship DD, Tapley BD (2006) Antarctic mass rates from GRACE. Geophys Res Lett 33: L11502. doi: 10.129/2006GL026369 CrossRefGoogle Scholar
  9. Chen JL, Wilson CR, Seo K-W (2009) S2 tide aliasing in GRACE time-variable gravity solutions. J Geod (83):679–687 doi: 10.1007/s00190-008-0282-1
  10. Cheng M, Tapley B (2004) Variations in the Earth’s oblateness during the past 28 years. J Geophys Res 109: B09402. doi: 10.1029/2004JB003028 CrossRefGoogle Scholar
  11. Crowley JW, Mitrovica JX, Bailey RC, Tamisiea ME, Davis JL (2008) Annual variations in water storage and precipitation in the Amazon Basin. J Geod 82(1): 9–13. doi: 10.1007/s00190-007-0153-1 CrossRefGoogle Scholar
  12. Dach, R, Hugentobler, U, Fridez, P, Meindl, M (eds) (2007) Bernese GPS Software Version 5.0. Astronomical Institute University of Bern, BernGoogle Scholar
  13. Davis J, Elosegui P, Mitrovica J, Tamisiea M (2004) Climate-driven deformation of the solid Earth from GRACE and GPS. Geophys Res Lett 31: L24605. doi: 10.1029/2004GL021435 CrossRefGoogle Scholar
  14. Dong D, Fang P, Bock Y, Cheng M, Miyazaki S (2002) Anatomy of apparent seasonal variations from GPS-derived site position time series. J Geophys Res 107(B4). doi: 10.1029/2001JB000573
  15. Dong D, Yunck T, Heflin M (2003) Origin of the international terrestrial reference frame. J Geophys Res 108(B4): 2200. doi: 10.1029/2002JB002035 CrossRefGoogle Scholar
  16. Dow J, Neilan R, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3-4): 191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  17. Drinkwater MR, Haagmans R, Muzi D, Popescu S, Floberghagen R, Kern M, Fehringer M (2007) The GOCE gravity mission: ESA’s first core earth explorer. Proceedings of third international GOCE user workshop, 6–8 November 2006, Frascati, Italy, 1–8, ESA SP-627, ISBN 92-9092-938-3Google Scholar
  18. Ferland R (2006) IGS05 fine tuning, IGSMAIL-5455.
  19. Flechtner F (2005) GRACE AOD1B product description document (Rev. 2.1), GRACE 327-750 (GR-GFZ-AOD-0001). GeoForschungsZentrum Potsdam, GermanyGoogle Scholar
  20. Flechtner F, Dahle C, Neumayer KH, König R, Förste C (2010) The release 04 CHAMP and GRACE EIGEN gravity feld models. In: Flechtner F, Mandea M, Gruber T, Rothacher M, Wickert J, Güntner A, Schöne T (eds) System Earth via geodetic–geophysical space techniques, advanced technologies in Earth sciences. Springer, Berlin, pp 41–58. doi: 10.1007/978-3-642-10228-8_4 CrossRefGoogle Scholar
  21. Freymueller JT (2009) Seasonal Position variations and regional reference frame realization. In: Drewes H (ed) Geodetic reference frames, IAG Symposium Munich, Germany, 9–14 October 2006, International Association of Geodesy Symposia, vol 134, Springer, pp 191–196. doi: 10.1007/978-3-642-00860-3_30
  22. Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32: L23311. doi: 10.1029/2005GL024342 CrossRefGoogle Scholar
  23. Han D, Wahr J (1995) The viscoelastic relaxation of a realistically stratified Earth, and a further analysis of postglacial rebound. Geophys J Int 120(2): 287–311. doi: 10.1111/j.1365-246X.1995.tb01819.x CrossRefGoogle Scholar
  24. Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2007) GNSS—global navigation satellite systems: GPS, GLONASS, Galileo & more, 1st edn. Springer, ViennaGoogle Scholar
  25. Horwath M, Rülke A, Fritsche M, Dietrich R (2010) Mass variation signals in GRACE products and in crustal deformations from GPS: a comparison. In: Flechtner F, Mandea M, Gruber T, Rothacher M, Wickert J, Güntner A, Schöne T (eds) System Earth via geodetic–geophysical space techniques, advanced technologies in earth sciences. Springer, Berlin, pp 399–406. doi: 10.1007/978-3-642-10228-8_34 CrossRefGoogle Scholar
  26. Jaldehag RTK, Johansson JM, Rönnäng BO, Elósegui P, Davis JL, Shapiro II, Niell A (1996) Geodesy using the Swedish permanent GPS network: Effects of signal scattering on estimates of relative site positions. J Geophys Res 101(B8): 1601–1604CrossRefGoogle Scholar
  27. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77: 437–470CrossRefGoogle Scholar
  28. Kaniuth K, Stuber K, Vetter S (2005) Sensitivität von GPS-Höhenbestimmungen gegen Akkumulation von Schnee auf der Antenne. AVN 112(8–9): 290–295Google Scholar
  29. King M, Moore P, Clarke P, Lavallée D (2006) Choice of optimal averaging radii for temporal GRACE gravity solutions, a comparison with GPS and satellite altimetry. Geophys J Int 166(1): 1–11. doi: 10.1111/j.1365-246X.2006.03017.x CrossRefGoogle Scholar
  30. Kuo C-Y, Shum CK, Guo J, Yi Y, Braun A, Fukumori I, Matsumoto K, Sato T, Shibuya K (2008) Southern ocean mass variation studies using GRACE and satellite altimetry. Earth Planets Space 60(5): 477–485Google Scholar
  31. Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod 81(11): 733–749. doi: 10.1007/s00190-007-0143-3 CrossRefGoogle Scholar
  32. Lavallee DA, van Dam T, Blewitt G, Clarke PJ (2006) Geocenter motions from GPS: a unified observation model. J Geophys Res 111: B05405. doi: 10.1029/2005JB003784 CrossRefGoogle Scholar
  33. Leuliette EW, Miller L (2009) Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophys Res Lett 36: L04608. doi: 10.1029/2008GL036010 CrossRefGoogle Scholar
  34. Luthcke SB, Arendt AA, Rowlands DS, McCarthy JJ, Larsen CF (2008) Recent glacier mass changes in the Gulf of Alaska from GRACE mascon solutions. J Glaciol 54(188): 767–777. doi: 10.3189/002214308787779933 CrossRefGoogle Scholar
  35. McCarthy D, Petit G (2004) IERS conventions (2003), IERS technical note no. 32, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, ISBN 3-89888-884-3Google Scholar
  36. Morison J, Wahr J, Kwok R, Peralta-Ferriz C (2007) Recent trends in Arctic Ocean mass distribution revealed by GRACE. Geophys Res Lett 34: L7602. doi: 10.1029/2006GL029016 CrossRefGoogle Scholar
  37. Niell AE (2001) Preliminary evaluation of atmospheric mapping functions based on numerical weather models. Phys Chem Earth 26(6–8): 475–480. doi: 10.1016/S1464-1895(01)00087-4 Google Scholar
  38. Nordman M, Mäkinen J, Virtanen H, Johansson JM, Bilker-Koivula M, Virtanen J (2009) Crustal loading in vertical GPS time series in Fennoscandia. J Geodyn 48(3–5): 144–150. doi: 10.1016/j.jog.2009.09.003 CrossRefGoogle Scholar
  39. Penna N, King MA, Stewart MP (2007) GPS height time series: short-period origins of spurious long-period signals. J Geophys Res 112: B02402. doi: 10.1029/2005JB004047 CrossRefGoogle Scholar
  40. Prawirodirdjo L, Ben-Zion Y, Bock Y (2006) Observation and modeling of thermoelastic strain in Southern California Integrated GPS Network daily position time series. J Geophys Res 111: B02408. doi: 10.1029/2005JB003716 CrossRefGoogle Scholar
  41. Ray J, Altamimi Z, Collilieux X, Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Sol 12(1): 55–64. doi: 10.1007/s10291-007-0067-7 CrossRefGoogle Scholar
  42. Reigber C, Lühr H, Schwintzer P (2002) CHAMP mission status. Adv Space Res 30(2): 129–134. doi: 10.1016/S0273-1177(02)00276-4 CrossRefGoogle Scholar
  43. Rodell M, Velicogna I, Famiglietti J (2009) Satellite-based estimates of groundwater depletion in India. Nature 460: 999–1002. doi: 10.1038/nature08238 CrossRefGoogle Scholar
  44. Romagnoli C, Zerbini S, Lago L, Richter B, Simon D, Domenichini F, Elmi C, Ghirotti M (2003) Influence of soil consolidation and thermal expansion effects on height and gravity variations. J Geodyn 35(4–5): 521–539. doi: 10.1016/S0264-3707(03)00012-7 CrossRefGoogle Scholar
  45. Rothacher M, Angermann D, Artz T, Bosch W, Drewes H, Böckmann S, Gerstl M, Kelm R, König D, König R, Meisel B, Müller H, Nothnagel A, Panafidina N, Richter B, Rudenko S, Schwegmann W, Seitz M, Steigenberger P, Tesmer V, Thaller D (2011) GGOS-D: homogeneous reprocessing and rigorous combination of space geodetic techniques (submitted to J Geod)Google Scholar
  46. Schillak S (2004) Analysis of the process of the determination of station coordinates by the satellite laser ranging based on results of the Borowiec SLR station in 1993.5 - 2000.5, Part 1: Performance of the Satellite Laser Ranging. Artif Satellites 39(3): 217–263Google Scholar
  47. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12): 781–798. doi: 10.1007/s00190-007-0148-y CrossRefGoogle Scholar
  48. Simmons A, Gibson J (2000) The ERA-40 Project Plan. ERA-40 Project Report Series 1, ECMWFGoogle Scholar
  49. Sovers OJ, Fanselow JL, Jacobs CS (1998) Astrometry and geodesy with radio interferometry: experiments, models, results. Rev Modern Phys 70(4): 1393–1454. doi: 10.1103/RevModPhys.70.1393 CrossRefGoogle Scholar
  50. Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111: B05402. doi: 10.1029/2005JB003747 CrossRefGoogle Scholar
  51. Steigenberger P, Boehm J, Tesmer V (2009) Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. J Geod 83(10): 943–951. doi: 10.1007/s00190-009-0311-8 CrossRefGoogle Scholar
  52. Steigenberger P, Artz T, Böckmann S, Kelm R, König R, Meisel B, Müller H, Nothnagel A, Rudenko S, Tesmer V, Thaller D (2010) GGOS-D consistent, high-accuracy technique-specific solutions. In: Flechtner F, Gruber T, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds) System Earth via geodetic–geophysical space techniques, advanced technologies in Earth sciences. Springer, Berlin, pp 545–554. doi: 10.1007/978-3-642-10228-8_45 CrossRefGoogle Scholar
  53. Takiguchi H, Otsubo T, Fukuda Y (2006) Mass-redistribution-induced crustal deformation of global satellite laser ranging stations due to non-tidal ocean and land water circulation. Earth Planets Space 58(12): E13–E16Google Scholar
  54. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31: L09607. doi: 10.1029/2004GL019920 CrossRefGoogle Scholar
  55. Tesmer V, Steigenberger P, Rothacher M, Boehm J, Meisel B (2009) Annual deformation signals from homogeneously reprocessed VLBI and GPS height time series. J Geod 83(10): 973–988. doi: 10.1007/s00190-009-0316-3 CrossRefGoogle Scholar
  56. Tregoning P, Watson C, Ramillien G, McQueen H, Zhang J (2009) Detecting hydrologic deformation using GRACE and GPS. Geophys Res Lett 36: L15401. doi: 10.1029/2009GL038718 CrossRefGoogle Scholar
  57. van Dam T, Wahr J, Lavallée D (2007) A comparison of annual vertical crustal displacements from GPS and Gravity recovery and climate experiment (GRACE) over Europe. J Geophys Res 112: B03404. doi: 10.1029/2006JB004335 CrossRefGoogle Scholar
  58. Velicogna I, Wahr J (2006) Acceleration of Greenland ice-mass loss in Spring 2004. Nature 443: 329–331. doi: 10.1038/nature05168 CrossRefGoogle Scholar
  59. Velicogna I, Wahr J (2006) Measurements of time-variable gravity show mass loss in Antarctica. Science 311: 1754–1756. doi: 10.1126/science.1123785 CrossRefGoogle Scholar
  60. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12): 30,205–30,229. doi: 10.1029/98JB02844 CrossRefGoogle Scholar
  61. Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31: L11501. doi: 10.1029/2004GL019779 CrossRefGoogle Scholar
  62. Watkins M, Yuan DN (2007) JPL level-2 processing standards document for level-2 product release 04,
  63. Williams SD, Bock Y, Fang P, Jamason P, Nikolaidis R M, Prawirodirdjo L, Miller M, Johnson D J (2004) Error analysis of continuous GPS position time series. J Geophys Res 109: B03412. doi: 10.1029/2003JB002741 CrossRefGoogle Scholar
  64. Willis JK, Chambers DP, Nerem RS (2008) Assessing the globally averaged sea level budget on seasonal to interannual timescales. J Geophys Res 113: C06015. doi: 10.1029/2007JC004517 CrossRefGoogle Scholar
  65. Yan H, Chen W, Zhu Y, Zhang W, Zhong M (2009) Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes. Geophys Res Lett 36: L13301. doi: 10.1029/2009GL038152 CrossRefGoogle Scholar
  66. Zerbini S, Matonti F, Raicich F, Richter B, van Dam T (2004) Observing and assessing nontidal ocean loading using ocean, continuous GPS and gravity data in the Adriatic area. Geophys Res Lett 31: L23609. doi: 10.1029/2004GL021185 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Volker Tesmer
    • 1
    Email author
  • Peter Steigenberger
    • 2
  • Tonie van Dam
    • 3
  • Torsten Mayer-Gürr
    • 4
  1. 1.OHB-System AGBremenGermany
  2. 2.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMunichGermany
  3. 3.Faculty of Science, Technology, and CommunicationUniversity of LuxembourgLuxembourgLuxembourg
  4. 4.Institute of Geodesy and GeoinformationUniversity of BonnBonnGermany

Personalised recommendations