Journal of Geodesy

, 85:395 | Cite as

Multi-technique comparison of troposphere zenith delays and gradients during CONT08

  • Kamil Teke
  • Johannes Böhm
  • Tobias Nilsson
  • Harald Schuh
  • Peter Steigenberger
  • Rolf Dach
  • Robert Heinkelmann
  • Pascal Willis
  • Rüdiger Haas
  • Susana García-Espada
  • Thomas Hobiger
  • Ryuichi Ichikawa
  • Shingo Shimizu
Original Article

Abstract

CONT08 was a 15 days campaign of continuous Very Long Baseline Interferometry (VLBI) sessions during the second half of August 2008 carried out by the International VLBI Service for Geodesy and Astrometry (IVS). In this study, VLBI estimates of troposphere zenith total delays (ZTD) and gradients during CONT08 were compared with those derived from observations with the Global Positioning System (GPS), Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), and water vapor radiometers (WVR) co-located with the VLBI radio telescopes. Similar geophysical models were used for the analysis of the space geodetic data, whereas the parameterization for the least-squares adjustment of the space geodetic techniques was optimized for each technique. In addition to space geodetic techniques and WVR, ZTD and gradients from numerical weather models (NWM) were used from the European Centre for Medium-Range Weather Forecasts (ECMWF) (all sites), the Japan Meteorological Agency (JMA) and Cloud Resolving Storm Simulator (CReSS) (Tsukuba), and the High Resolution Limited Area Model (HIRLAM) (European sites). Biases, standard deviations, and correlation coefficients were computed between the troposphere estimates of the various techniques for all eleven CONT08 co-located sites. ZTD from space geodetic techniques generally agree at the sub-centimetre level during CONT08, and—as expected—the best agreement is found for intra-technique comparisons: between the Vienna VLBI Software and the combined IVS solutions as well as between the Center for Orbit Determination (CODE) solution and an IGS PPP time series; both intra-technique comparisons are with standard deviations of about 3–6 mm. The best inter space geodetic technique agreement of ZTD during CONT08 is found between the combined IVS and the IGS solutions with a mean standard deviation of about 6 mm over all sites, whereas the agreement with numerical weather models is between 6 and 20 mm. The standard deviations are generally larger at low latitude sites because of higher humidity, and the latter is also the reason why the standard deviations are larger at northern hemisphere stations during CONT08 in comparison to CONT02 which was observed in October 2002. The assessment of the troposphere gradients from the different techniques is not as clear because of different time intervals, different estimation properties, or different observables. However, the best inter-technique agreement is found between the IVS combined gradients and the GPS solutions with standard deviations between 0.2 and 0.7 mm.

Keywords

Space geodetic techniques Numerical weather models Troposphere zenith delays Horizontal troposphere gradients 

Supplementary material

190_2010_434_MOESM1_ESM.pdf (323 kb)
ESM 1 (PDF 323 kb)
190_2010_434_MOESM2_ESM.pdf (94 kb)
ESM 2 (PDF 95 kb)
190_2010_434_MOESM3_ESM.pdf (94 kb)
ESM 3 (PDF 95 kb)
190_2010_434_MOESM4_ESM.pdf (35 kb)
ESM 4 (PDF 36 kb)
190_2010_434_MOESM5_ESM.pdf (24 kb)
ESM 5 (PDF 24 kb)
190_2010_434_MOESM6_ESM.pdf (24 kb)
ESM 6 (PDF 24 kb)

References

  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res 112(B9): B09401. doi:10.1029/2007JB004949 CrossRefGoogle Scholar
  2. Bar-Sever YE, Kroger PM, Borjesson JA (1998) Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. J Geophys Res 103(B3): 5019–5035. doi:10.1029/97JB03534 CrossRefGoogle Scholar
  3. Behrend D, Cucurull L, Vila J, Haas R (2000) An inter-comparision study to estimate zenith wet delays using VLBI, GPS, and NWP models. Earth Planets Space 52: 691–694Google Scholar
  4. Behrend D, Haas R, Pino D, Gradinarsky LP, Keihm SJ, Schwarz W, Cucurull L, Rius A (2002) MM5 derived ZWDs compared to observational results from VLBI, GPS and WVR. Phys Chem Earth 27: 3301–3308Google Scholar
  5. Bizouard C, Gambis D (2009) The combined solution C04 for earth orientation parameters consistent with international terrestrial reference frame. In: Drewes H (ed) Geodetic reference frames, IAG Symp, vol 134, pp 265–270. doi:10.1007/978-3-642-00860-3_41
  6. Bock O, Willis P, Lacarra M, Bosser P (2010) An intercomparison of DORIS tropospheric delays estimated from DORIS and GPS data. Adv Space Res 46(12): 1648–1660. doi:10.1016/j.asr.2010.05.018 CrossRefGoogle Scholar
  7. Böhm J (2004) Troposphärische Laufzeitverzögerungen in der VLBI, Geowissenschaftliche Mitteilungen, Heft Nr. 68, Schriftenreihe der Studienrichtung Vermessung und Geoinformation, Technische Universität Wien, ISSN 1811–8380 (in German)Google Scholar
  8. Böhm J, Schuh H (2004) Vienna mapping functions in VLBI analyses. Geophys Res Lett 31(1): L01603. doi:10.1029/2003GL018984 CrossRefGoogle Scholar
  9. Böhm J, Werl B, Schuh H (2006a) Troposphere mapping functions for GPS and very long baseline interferometry from European Center for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111: B02406. doi:10.129/2005JB003629 CrossRefGoogle Scholar
  10. Böhm J, Niell AE, Tregoning P, Schuh H (2006b) Global mapping function (GMF): a new empirical mapping function based on data from numerical weather model data. Geophys Res Lett 33: L07304. doi:10.1029/2005GL025546 CrossRefGoogle Scholar
  11. Böhm J, Schuh H (2007) Troposphere gradients from the ECMWF in VLBI analysis. J Geod 81(6–8): 403–408. doi:10.1007/s00190-007-0144-2 CrossRefGoogle Scholar
  12. Böhm J, Böhm S, Nilsson T, Pany A, Plank L, Spicakova H, Teke K, Schuh H (2010) The new Vienna VLBI Software VieVS. IAG Symposia Series, Buenos Aires 2010, Springer, Berlin (in press)Google Scholar
  13. Brunner FK, Rüeger JM (1992) Theory of the local scale parameter method for EDM. Bull Géod 66: 355–364CrossRefGoogle Scholar
  14. Byun SH, Bar-Server YE (2009) A new type of troposphere zenith path delay product of the international GNSS service. J Geod 83(3–4): 1–7. doi:10.1007/s00190-008-0288-8 CrossRefGoogle Scholar
  15. Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis from space geodetic data. J Geophys Res 102(B9): 20489–20502. doi:10.1029/97JB01739 CrossRefGoogle Scholar
  16. Cucurull L, Vandenberghe F (1999) Comparision of PW estimated from MM5 and GPS data, MM5 workshop ‘99, Boulder, Colorado, USAGoogle Scholar
  17. Cucurull L, Navascues B, Ruffini G, Elosegui P, Rius A, Vila J (2000) The use of GPS to validate NWP systems: the HIRLAM model. J Atmos Ocean Technol 17(6): 773–787CrossRefGoogle Scholar
  18. Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) Bernese GPS Software Version 5.0, Astronomical Institute, University of BernGoogle Scholar
  19. Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4): 353–365. doi:10.1007/s00190-008-0281-2 CrossRefGoogle Scholar
  20. Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20(6): 1593–1607CrossRefGoogle Scholar
  21. Davis JL, Herring TA, Shapiro II (1991) Effects of atmospheric modeling errors on determinations of baseline vectors from VLBI. J Geophys Res 96(B1): 643–650CrossRefGoogle Scholar
  22. Davis JL, Elgered G, Niell AE, Kuehn CE (1993) Ground-based measurements of gradients in the “wet” radio refractivity of air. Radio Sci 28(6): 1003–1018CrossRefGoogle Scholar
  23. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83: 191–198. doi:10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  24. Elgered G (1993) Tropospheric radio path delay from ground-based microwave radiometry. In: Janssen M (ed) Atmospheric remote sensing by microwave radiometry. Wiley, New York, pp 215–258Google Scholar
  25. Elgered G, Jarlemark POJ (1998) Ground-based microwave radiometry and long-term observations of atmospheric water vapor. Radio Sci 33(3): 707–717CrossRefGoogle Scholar
  26. Emardson TR, Elgered G, Johansson JM (1998) Three months of continuous monitoring of atmospheric water vapor with a network of Global Positioning System receivers. J Geophys Res 103(D2): 1807–1820. doi:10.1029/97JD03015 CrossRefGoogle Scholar
  27. Fey A, Gordon D, Jacobs CS (2009) The second realization of the international celestial reference frame by very long baseline interferometry, IERS Technical Note; 35. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, 204 p, ISBN 3-89888-918-6Google Scholar
  28. Förstner W (1979) Ein Verfahren zur Schätzung von Varianz- und Kovarianzkomponenten. Allg. Vermess. Nachr 11–12:446-453 (in German)Google Scholar
  29. Gambis D (2004) Monitoring earth orientation using space geodetic techniques, state-of-the-art and prospective. J Geod 78(4–5): 295–303. doi:10.1007/s00190-004-0394-1 CrossRefGoogle Scholar
  30. Gobinddass ML, Willis P, Sibthorpe A, Zelensky NP, Lemoine FG, Ries JC, Ferland R, Bar-Sever YE (2009a) Improving DORIS geocenter time series using an empirical rescaling of solar radiation pressure models. Adv Space Res 44(11): 1279–1287. doi:10.1016/j.asr.2009.08.004 CrossRefGoogle Scholar
  31. Gobinddass ML, Willis P, de Viron O, Sibthorpe AJ, Zelensky N, Ries JC, Ferland R, Bar-Sever YE, Diament M (2009b) Systematic biases in DORIS-derived geocenter time series related to solar radiation pressure mis-modelling. J Geod 83(9): 849–858. doi:10.1007/s00190-009-0303-8 CrossRefGoogle Scholar
  32. Gobinddass ML, Willis P, Menvielle M, Diament M (2010) Refining DORIS atmospheric drag estimation in preparation of ITRF2008. Adv Space Res 46(12): 1566–1577. doi:10.1016/j.asr.2010.04.004 CrossRefGoogle Scholar
  33. Gradinarsky LP, Haas R, Elgered G, Johansson JM (2000) Wet path delay and delay gradients inferred from microwave radiometer, GPS and VLBI observations. Earth Planets Space 52(10): 695–698Google Scholar
  34. Haas R, Gradinarsky LP, Johansson JM, Elgered G (1999) The atmospheric propagation delay: a common error source for collocated space techniques of VLBI and GPS. In: Proceedings of International Workshop “Geod. Meas. Coll. Spac. Tech. Earth” (GEMSTONE). Koganei, Tokyo, pp 230–234Google Scholar
  35. Heinkelmann R, Böhm J, Schuh H, Bolotin S, Engelhardt G, MacMillan DS, Negusini M, Skurikhina E, Tesmer V, Titov O (2007) Combination of long time series of troposphere zenith delays observed by VLBI. J Geod 81(6–8): 483–501. doi:10.1007/s00190-007-0147-z CrossRefGoogle Scholar
  36. Heinkelmann R, Böhm J, Bolotin S, Engelhardt G, Haas R, MacMillan DS, Negusini M, Schuh H, Skurikhina E, Titov O. Analysis and model noise assessment of VLBI derived tropospheric parameters during CONT08. J Geod (this issue)Google Scholar
  37. Herring TA (1986) Precision of vertical estimates from very long baseline interferometry. J Geophys Res 91(B9): 9177–9182. doi:10.1029/JB091iB09p09177 CrossRefGoogle Scholar
  38. Hobiger T, Ichikawa R, Koyama Y, Kondo T (2008) Fast and accurate ray-tracing algorithms for real-time space geodetic applications using numerical weather models. J Geophys Res 113: D20302. doi:10.1029/2008JD010503 CrossRefGoogle Scholar
  39. Hobiger T, Ichikawa R, Takasu T, Koyama Y, Kondo T (2008b) Ray-traced troposphere slant delays for precise point positioning. Earth Planets Space 60(5): e1–e4Google Scholar
  40. Hobiger T, Shimada S, Shimizu S, Ichikawa R, Koyama Y, Kondo T (2010) Improving GPS positioning estimates during extreme weather situations by the help of fine-mesh numerical weather models. J Atmosph Solar Terrestr Phys 72(2–3): 262–270. doi:10.1016/j.jastp.2009.11.018 CrossRefGoogle Scholar
  41. Ishikawa Y (2001) Development of a mesoscale 4-dimensional variational data assimilation (4D-Var) system at JMA. In: Proceedings of the 81st annual meeting of the AMS: precipitation extremes: prediction, impacts and responses, P2.45Google Scholar
  42. JMA (2002) Outline of the operational numerical weather prediction at the Japanese Meteorological Agency, 158 pGoogle Scholar
  43. Koch KR (1997) Parameterschätzung und Hypothesentests, 3rd edn. Dümmler, Bonn, p 368 (in German)Google Scholar
  44. Lyard F, Lefevre F, Lettelier T, Francis O (2006) Modelling the global ocean tides, Modern insights from FES2004. Ocean Dyn 56(6): 394–415. doi:10.1007/s10236-006-0086-x CrossRefGoogle Scholar
  45. MacMillan DS, Ma C (1994) Evaluation of very long baseline interferometry atmospheric modeling improvements. J Geophys Res 99(B1): 637–651. doi:10.1029/93JB02162 CrossRefGoogle Scholar
  46. MacMillan DS (1995) Atmospheric gradients from very long baseline interferometry observations. Geophys Res Lett 22(9): 1041–1044. doi:10.1029/95GL00887 CrossRefGoogle Scholar
  47. MacMillan DS, Ma C (1997) Atmospheric gradients and the VLBI terrestrial and celestial reference frames. Geophys Res Lett 24(4): 453–456. doi:10.1029/97GL00143 CrossRefGoogle Scholar
  48. Marini JW (1972) Correction of satellite tracking data for an arbitrary tropospheric profile. Radio Sci 7(2): 223–231CrossRefGoogle Scholar
  49. McCarthy D, Petit G (eds) (2004) IERS Conventions 2003, IERS Techn. Note 32, Verlag des Bundesamts für Kartogr. und Geod., Frankfurt am Main, GermanyGoogle Scholar
  50. Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2): 3227–3246. doi:10.1029/95JB03048 CrossRefGoogle Scholar
  51. Niell AE, Coster AJ, Solheim FS, Mendes VB, Toor PC, Langley RB, Upham CA (2001) Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J Atmos Oceanic Technol 18: 830–850CrossRefGoogle Scholar
  52. Petrov L, Boy JP (2004) Study of the atmospheric pressure loading signal in Very Long Baseline Interferometry observations. J Geophys Res 109(B3): B03405. doi:10.1029/2003JB002500 CrossRefGoogle Scholar
  53. Ray RD, Ponte RM (2003) Barometric tides from ECMWF operational analyses. Ann Geophys 21: 1897–1910CrossRefGoogle Scholar
  54. Rummel R, Rothacher M, Beutler G (2005) Integrated global geodetic observing system (IGGOS)-science rationale. J Geodyn 40(4–5): 357–362. doi:10.1016/j.jog.2005.06.003 CrossRefGoogle Scholar
  55. Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The use of artificial satellites for geodesy. In: Geophys. Monogr. Ser., vol 15, Amer. Geophys. Union, pp 274–251Google Scholar
  56. Saastamoinen J (1973) Contribution to the theory of atmospheric refraction (in three parts). Bull Geod 105–107:279–298 (see also pp 383–397)Google Scholar
  57. Schervish MJ (1996) P values: what they are and what they are not. Am Stat 50(3): 203–206. doi:10.2307/2684655 CrossRefGoogle Scholar
  58. Schlüter W, Behrend D (2007) The International VLBI Service for Geodesy and Astrometry (IVS): current capabilities and future prospects. J Geod 81(6–8): 379–387. doi:10.1007/s00190-006-0131-z CrossRefGoogle Scholar
  59. Schuh H, Böhm J (2003) Status report of the IVS pilot project-tropospheric parameters. In: Vandenberg NR, Baver KD (eds) International VLBI Service for Geodesy and Astrometry 2002 Annual Report. NASA/TP-2003-211619. Goddard Space Flight Center, Maryland, pp 13–21Google Scholar
  60. Schuh H, Behrend D (2009) International VLBI Service for Geodesy and Astrometry (IVS). In: Drewes H, Hornik H (eds) Report of the International Association of Geodesy 2007–2009—Travaux de l’Association Internationale de Géodésie 2007–2009, vol 36, pp 297–306Google Scholar
  61. Snajdrova K, Böhm J, Willis P, Haas R, Schuh H (2006) Multi- technique comparison of tropospheric zenith delays derived during the CONT02 campaign. J Geod 79(10–11): 613–623. doi:10.1007/s00190-005-0010-z CrossRefGoogle Scholar
  62. Steigenberger P, Tesmer V, Krügel M, Thaller D, Schmid R, Vey S, Rothacher M (2007) Comparisons of homogeneously reprocessed GPS and VLBI long time-series of troposphere zenith delays and gradients. J Geod 81(6–8): 503–514. doi:10.1007/s00190-006-0124-y CrossRefGoogle Scholar
  63. Steigenberger P, Hugentobler U, Lutz S, Dach R (2010) CODE contribution to the IGS reprocessing. Springer-Verlag, BerlinGoogle Scholar
  64. Tesmer V, Böhm J, Heinkelmann R, Schuh H (2007) Effect of different tropospheric mapping functions on the TRF, CRF and position time-series estimated from VLBI. J Geod 81: 409–421. doi:10.2007/s00190-006-0126-9 CrossRefGoogle Scholar
  65. Tsuboki K, Sakakibara A (2002) Large-scale parallel computing of Cloud Resolving Storm Simulator, High Performance Computing, pp 243–259. doi:10.1007/3-540-47847-7_21
  66. Undén P, Rontu L, Järvinen H, Lynch P, Calvo J, Cats G, Cuxart J, Eerola K, Fortelius C, Garcia-Moya JA, Jones C, Lenderlink G, McDonald A, McGrath R, Navascues B, Woetman Nielsen N, Ødegaard V, Rodriguez E, Rummukainen M, Rõõm R, Sattler K, Hansen Sass B, Savijärvi H, Wichers Schreur B, Sigg R, The H, Tijm A (2002) HIRLAM-5 Scientific documentation. Swedish Meteorological and Hyrdological Institute, Norrköping, p 144Google Scholar
  67. Webb FH, Zumberge JF (1993) An introduction to GIPSY/OASIS-II. JPL Publication D-11088, PasadenaGoogle Scholar
  68. Willis P, Fagard H, Ferrage P, Lemoine FG, Noll CE, Noomen R, Otten M, Ries JC, Rothacher M, Soudarin L, Tavernier G, Valette JJ (2010) The International DORIS Service, toward maturity, in DORIS: scientific applications in geodesy and geodynamics. Adv Space Res 45(12): 1408–1420. doi:10.1016/j.asr.2009.11.018 CrossRefGoogle Scholar
  69. Willis P, Ries JC, Zelensky NP, Soudarin L, Fagard H, Pavlis EC, Lemoine FG (2009) DPOD2005, realization of a DORIS terrestrial reference frame for precise orbit determination. Adv Space Res 44(5): 535–554CrossRefGoogle Scholar
  70. Willis P, Bar-Sever YE, Bock O (2010a) Estimating horizontal tropospheric gradients in DORIS data processing. In: IAG SympGoogle Scholar
  71. Willis P, Boucher C, Fagard H, Garayt B, Gobinddass ML (2010b) Contributions of the French Institut Géographique National (IGN) to the International DORIS Service. Adv Space Res 45(12): 1470–1480CrossRefGoogle Scholar
  72. Willis P, Ferrage P, Lemoine FG, Noll CE, Noomen R, Otten M, Ries JC, Rothacher M, Soudarin L, Tavernier G, Valette JJ (2010c) The International DORIS service, toward maturity. Adv Space Res 45(12): 1408–1420CrossRefGoogle Scholar
  73. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3): 5005–5017. doi:10.1029/96JB03860 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Kamil Teke
    • 1
    • 2
  • Johannes Böhm
    • 1
  • Tobias Nilsson
    • 1
  • Harald Schuh
    • 1
  • Peter Steigenberger
    • 3
  • Rolf Dach
    • 4
  • Robert Heinkelmann
    • 5
  • Pascal Willis
    • 6
    • 7
    • 8
  • Rüdiger Haas
    • 9
  • Susana García-Espada
    • 9
    • 10
  • Thomas Hobiger
    • 11
  • Ryuichi Ichikawa
    • 12
  • Shingo Shimizu
    • 13
  1. 1.Institute of Geodesy and GeophysicsVienna University of TechnologyViennaAustria
  2. 2.Geomatics DepartmentHacettepe UniversityAnkaraTurkey
  3. 3.Institut für Astronomische und Physikalische Geodäsie, Technische Universität MünchenMünchenGermany
  4. 4.Astronomical InstituteUniversity of BernBernSwitzerland
  5. 5.Deutsches Geodätisches Forschungsinstitut DGFIMünchenGermany
  6. 6.Institut Géographique National, Direction TechniqueSaint-MandéFrance
  7. 7.Institut de Physique du Globe de ParisParisFrance
  8. 8.Sorbonne Paris CitéParisFrance
  9. 9.Department of Earth and Space SciencesChalmers University of Technology, Onsala Space ObservatoryOnsalaSweden
  10. 10.Instituto Geografico NacionalYebesSpain
  11. 11.Space-Time Standards Group, National Institute of Information and Communications Technology (NICT)TokyoJapan
  12. 12.Space-Time Standards Group, Kashima Space Research CenterNational Institute of Information and Communications Technology (NICT)Kashima, IbarakiJapan
  13. 13.National Research Institute for Earth Science and Disaster PreventionTsukuba, IbarakiJapan

Personalised recommendations