Journal of Geodesy

, Volume 85, Issue 3, pp 159–169 | Cite as

Potentialities of multifrequency ionospheric correction in Global Navigation Satellite Systems

  • B. C. Kim
  • M. V. Tinin
Original Article


The first-order ionospheric error is reduced in the dual-frequency Global Navigation Satellite Systems (GNSS). In this paper, the possibility of eliminating ionospheric higher-order errors in the multifrequency GNSS is explored. Since the second-order error associated with the geomagnetic field effect on the refractive index can be eliminated in dual-frequency measurements, we explore the possibility of eliminating third-order errors in triple-frequency GNSS in view of phase scintillations. A connection between the possibility of improving the multifrequency GNSS accuracy and diffraction effects in radio signal propagation through the randomly inhomogeneous ionosphere is shown. The numerical simulation has revealed that the systematic, residual ionospheric error is considerably reduced when we pass on from dual-frequency to triple-frequency measurements. The change in the residual error variance during such a transition depends however on the relationship between the inner scale of the turbulent spectrum of ionospheric irregularities and the Fresnel radius. Given the inner scale larger than the Fresnel radius, not only the systematic error, but also the standard deviation reduces when we pass on from dual-frequency to triple-frequency measurements. Otherwise, when the Fresnel radius exceeds the inner scale, the variance increases with increasing number of frequencies in use.


Global Navigation Satellite Systems Ionospheric scintillation Residual error Dual-frequency and triple-frequency measurements 



Global Navigation Satellite Systems


Geometrical optics


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarons J (1982) Global morphology of ionospheric scintillations. Proc IEEE 70: 360–378CrossRefGoogle Scholar
  2. Akasofu S, Chapman S (1972) Solar-terrestrial physics. Clarendon Press, OxfordGoogle Scholar
  3. Bassiri S (1990) Three-frequency ranging systems and their applications to ionospheric delay calibration. TDA Progress Report 42–103, pp 14–20Google Scholar
  4. Bassiri S, Hajj GA (1992) Modeling the global positioning system signal propagation through the ionosphere. TDA Progress Report 42-110:92-103Google Scholar
  5. Bassiri S, Hajj GA (1993) Higher-order ionospheric effects on the global positioning system observables and means of modeling them. Manuscr Geod 18: 280–289Google Scholar
  6. Brunner FK, Gu M (1991) An improved model for the dual frequency ionospheric correction of GPS observations. Manuscr Geod 16: 205–214Google Scholar
  7. Budden KG (1985) The propagation of radio waves. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  8. Datta-Barua S, Walter T, Blanch J, Enge P (2008) Bounding higher-order ionosphere errors for the dual-frequency GPS user. Radio Sci 43: RS5010. doi: 10.1029/2007RS003772 CrossRefGoogle Scholar
  9. Dai L, Wang J, Rizos C, Han S (2003) Predicting atmospheric biases for real-time ambiguity resolution in GPS/GLONASS reference station networks. J Geod 76: 617–628CrossRefGoogle Scholar
  10. Davies K (1969) Ionospheric radio waves. Blaisdel Publishing Company, LondonGoogle Scholar
  11. de Jong K (1999) A modular approach to precise GPS positioning. GPS Solut 2: 52–56CrossRefGoogle Scholar
  12. Eckl MC, Snay RA, Soler T, Cline MW, Mader GL (2001) Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration. J Geod 75: 633–640CrossRefGoogle Scholar
  13. Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32: L23311. doi: 10.1029/2005GL024342 CrossRefGoogle Scholar
  14. Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82: 389–399CrossRefGoogle Scholar
  15. Gherm VE, Zernov NN, Strangeways HJ (2005) Propagation model for transionospheric fluctuating paths of propagation: simulator of the transionospheric channel. Radio Sci 40: RS1003. doi: 10.1029/2004RS003097 CrossRefGoogle Scholar
  16. Gherm V, Novitsky R, Zernov N, Strangeways HJ, Ioannides RT (2006) On the limiting accuracy of range measurements for the three frequency mode of operation of a satellite navigation system. 2nd Workshop radio systems and ionospheric effects. Rennes, 3–7 October 2006, Paper 11Google Scholar
  17. Grejner-Brzezinska DA, Da R, Toth C (1998) GPS error modeling and OTF ambiguity resolution for high-accuracy GPS/INS integrated system. J Geod 72: 626–638CrossRefGoogle Scholar
  18. Grewal MS, Weill LR, Andrews AP (2007) Global positioning systems, inertial navigation, and integration. Wiley, New YorkCrossRefGoogle Scholar
  19. Gu M, Brunner FK (1990) Theory of the two frequency dispersive range correction. Manuscr Geod 15: 357–361Google Scholar
  20. Hernández-Pajares M, Juan JM, Sanz J, Orús R (2007) Second-order ionospheric term in GPS: implementation and impact on geodetic estimates. J Geophys Res 112: B08417. doi: 10.1029/2006JB004707 CrossRefGoogle Scholar
  21. Hoque MM, Jakowski N (2006) Higher order ionospheric effects in precise GNSS positioning. J Geod 81: 259–268. doi: 10.1007/s00190-006-0106-0 CrossRefGoogle Scholar
  22. Hoque MM, Jakowski N (2008a) Mitigation of higher order ionospheric effects on GNSS users in Europe. GPS Solut 12: 87–97. doi: 10.1007/s10291-007-0069-5 CrossRefGoogle Scholar
  23. Hoque MM, Jakowski N (2008b) Estimate of higher order ionospheric errors in GNSS positioning. Radio Sci 43: RS5008. doi: 10.1029/2007RS003817 CrossRefGoogle Scholar
  24. IERS Conventions (2009) Chapter 9, pp 14–15.
  25. Ishimaru A (1978) Wave propagation and scattering in random media. Multiple scattering, turbulence, rough surfaces and remote sensing, vol 2. Academic Press, New YorkGoogle Scholar
  26. Kedar S, Hajj GA, Wilson BD, Heflin MB (2003) The effect of the second order GPS ionospheric correction on receiver positions. Geophys Res Lett 30: 1829. doi: 10.1029/2003GL017639 CrossRefGoogle Scholar
  27. Kim BC, Tinin MV (2006) The influence of different-scale ionospheric irregularities on the residual error of the satellite navigation system. In: 7th International symposium on antennas, propagation and EM theory proceedings, vol I, 26–29 October 2006, Guilin, China, pp 433–436Google Scholar
  28. Kim BC, Tinin MV (2007a) Contribution of ionospheric irregularities to the error of dual-frequency GNSS positioning. J Geod 81: 189–199. doi: 10.1007/s00190-006-0099-8 CrossRefGoogle Scholar
  29. Kim BC, Tinin MV (2007b) Effect of ionospheric irregularities on accuracy of dual-frequency GPS Systems. Geomag Aeron 47: 238– 243CrossRefGoogle Scholar
  30. Kim BC, Tinin MV (2009a) The second-order Rytov approximation and residual error in dual-frequency satellite navigation systems. Waves Random Complex 19: 284–304. doi: 10.1080/17455030802460080 CrossRefGoogle Scholar
  31. Kim BC, Tinin MV (2009b) association of the residual error of dual-frequency Global Navigation Satellite Systems with ionospheric turbulence parameters. J Atmos Solar Terr Phys 71: 1967–1973CrossRefGoogle Scholar
  32. Kim BC, Kolesnik SN, Tinin MV (2005) Ionospheric random inhomogeneities and second order correction of GPS data. XXVIII URSI General Assembly, New Delhi, India, October 2005, GF1b.8Google Scholar
  33. Klobuchar JA, Kunches JM (2003) Comparative range delay and variability of the Earth’s troposphere and ionosphere. GPS Solut 7: 55–58Google Scholar
  34. Kravtsov YuA, Orlov YuI (1990) Geometrical optics of inhomogeneous media. Springer, New YorkGoogle Scholar
  35. Kunches JM, Klobuchar JA (2001) Eye on the ionosphere: GPS after SA. GPS Solut 4: 52–54CrossRefGoogle Scholar
  36. Liu J, Cannon ME, Alves P, Petovello MG, Lachapelle G, MacGougan G, deGroot L (2003) A performance comparison of single and dual frequency GPS ambiguity resolution strategies. GPS Solut 7: 87–100CrossRefGoogle Scholar
  37. Morton YT, Zhou Q, Graas F (2009) Assessment of second-order ionosphere error in GPS range observables using Arecibo incoherent scatter radar measurements. Radio Sci 44: RS1002. doi: 10.1029/2008RS003888 CrossRefGoogle Scholar
  38. Munekane H (2005) A semi-analytical estimation of the effect of second-order ionospheric correction on the GPS positioning. Geophys J Int 163: 10–17CrossRefGoogle Scholar
  39. Olynik M, Petrovello MG, Cannjn ME, Lachapelle G (2002) Temporal impact of selected GPS errors on point positioning. GPS Solut 6: 47–57CrossRefGoogle Scholar
  40. Palamartchouk K (2010) Apparent geocenter oscillations in Global Navigation Satellite Systems solutions caused by the ionospheric effect of second order. J Geophys Res 115: B03415. doi: 10.1029/2008JB006099 CrossRefGoogle Scholar
  41. Petrie EJ, King MA, Moore P, Lavallée DA (2010) Higher-order ionospheric effects on the GPS reference frame and velocities. J Geophys Res 115: B03417. doi: 10.1029/2009JB006677 CrossRefGoogle Scholar
  42. Pireaux S, Defraigne P, Wauters L, Bergeot N, Baire Q, Bruyninx C (2010) Higher-order ionospheric effects in GPS time and frequency transfer. GPS Solut. doi: 10.1007/s10291-009-0152-1
  43. Prasad R, Ruggieri M (2005) Applied satellite navigation using GPS, GALILEO, and augmentation systems. Artech House, LondonGoogle Scholar
  44. Rytov SM, Kravtsov YuA, Tatarskii VI (1989) Introduction to statistical radiophysics, vol. 4, wave propagation through random media. Springer, New YorkGoogle Scholar
  45. Syndergaard S (2002) A new algorithm for retrieving GPS radio occultation total electron content. Geophys Res Lett. doi: 10.1029/2001GL014478
  46. Tatarskii VI (1971) The effect of a turbulent atmosphere on wave propagation. National Technical Information Service, Springfield, VAGoogle Scholar
  47. Teunissen PJG (2003) Theory of integer equivalent estimation with application to GNSS. J Geod 77: 402–410CrossRefGoogle Scholar
  48. Tinin MV, Kim BC, Kolesnik SN, Kravstov YA (2004) Inhomogeneous structure of the ionospheric plasma and accuracy of the satellite navigation system. In: Proceedings of ISAP’04, Sendai, Japan, pp 1105–1108Google Scholar
  49. Thölert S, Erker S, Langley R, Montenbruck O, Meurer M, Temple MA, Hauschild A (2009) Innovation: L5 signal first light. GPS World, June 1Google Scholar
  50. Wang Z, Wu Y, Zhang K, Meng Y (2005) Triple-frequency method for high-order ionospheric refractive error modeling in GPS modernization. J Glob Position Syst 4: 291–295CrossRefGoogle Scholar
  51. Xu G (2007) GPS theory, algorithms and applications, 2nd edn. Springer, New YorkGoogle Scholar
  52. Yeh KC, Liu CH (1982) Radio-wave scintillations in the ionosphere. Proc IEEE 70: 324–360CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Pusan National UniversityMiryang, GyeoungnamKorea
  2. 2.Irkutsk State UniversityIrkutskRussia

Personalised recommendations