Journal of Geodesy

, Volume 85, Issue 1, pp 39–50 | Cite as

Monte Carlo simulations of the impact of troposphere, clock and measurement errors on the repeatability of VLBI positions

  • A. PanyEmail author
  • J. Böhm
  • D. MacMillan
  • H. Schuh
  • T. Nilsson
  • J. Wresnik
Original Article


Within the International VLBI Service for Geodesy and Astrometry (IVS) Monte Carlo simulations have been carried out to design the next generation VLBI system (“VLBI2010”). Simulated VLBI observables were generated taking into account the three most important stochastic error sources in VLBI, i.e. wet troposphere delay, station clock, and measurement error. Based on realistic physical properties of the troposphere and clocks we ran simulations to investigate the influence of the troposphere on VLBI analyses, and to gain information about the role of clock performance and measurement errors of the receiving system in the process of reaching VLBI2010’s goal of mm position accuracy on a global scale. Our simulations confirm that the wet troposphere delay is the most important of these three error sources. We did not observe significant improvement of geodetic parameters if the clocks were simulated with an Allan standard deviation better than 1 × 10−14 at 50 min and found the impact of measurement errors to be relatively small compared with the impact of the troposphere. Along with simulations to test different network sizes, scheduling strategies, and antenna slew rates these studies were used as a basis for the definition and specification of VLBI2010 antennas and recording system and might also be an example for other space geodetic techniques.


VLBI VLBI2010 Monte Carlo simulations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong JW, Sramek RA (1982) Observations of tropospheric phase scintillations at 5 GHz on vertical paths. Radio Sci 17(6): 1579–1586CrossRefGoogle Scholar
  2. Böhm J, Wresnik J, Pany A (2007) Simulation of wet zenith delays and clocks. IVS Memorandum 2006-013v03.
  3. Church JA, White NJ, Coleman R, Lambeck K, Mitrovica JX (2004) Estimates of the regional distribution of sea-level rise over the 1950 to 2000 period. J Clim 17: 2609–2625CrossRefGoogle Scholar
  4. d’Auria G, Marzono FS, Merlo U (1993) Model for estimating the refractive-index structure constant in clear-air intermittent turbulence. Appl Opt 32: 2674–2680CrossRefGoogle Scholar
  5. Dravskikh AF, Finkelstein AM (1979) Tropospheric limitations in phase and frequency coordinate measurements in astronomy. Astrophys Space Sci 60: 251–265CrossRefGoogle Scholar
  6. Emardson TR, Jarlemark POJ (1999) Atmospheric modelling in GPS analysis and its effect on the estimated geodetic parameters. J Geod 73: 322–331CrossRefGoogle Scholar
  7. Fey A, Charlot P (2000) VLBA observations of radio reference frame sources. III. Astrometric suitability of an additional 225 sources. Astrophys J Suppl Series 128: 17–83CrossRefGoogle Scholar
  8. Gardner CS (1977) Correction of laser tracking data for the effects of horizontal refractivity gradients. Appl Opt 16(9): 2427–2432CrossRefGoogle Scholar
  9. Golbraikh E, Branover H, Kopeika NS, Zilberman A (2006) Non-Kolmogorov atmospheric turbulence and optical signal propagation. Nonlinear Process Geophys 13: 297–301CrossRefGoogle Scholar
  10. Heo BH, Jacoby-Koaly S, Kim KE, Campistron B, Benech B, Jung ES (2003) Use of the doppler spectral width to improve the estimation of the convective boundary layer height from UHF wind profiler observations. J Atmos Oceanic Technol 20(3): 408–424CrossRefGoogle Scholar
  11. Herring T, Davis JL, Shapiro I (1990) Geodesy by radio interferometry: the application of Kalman filtering to the analysis of very long baseline interferometry Data. J Geophys Res 95(B8): 12561–12581CrossRefGoogle Scholar
  12. Kolmogorov AN (1991) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc USSR Acad Sci 30:299–303 (Russian) (1941). Translated into English by Kolmogorov AN (1991) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc R Soc Lond A Math Phys Sci 434:9–13Google Scholar
  13. Leuliette EW, Nerem RS, Mitchum G (2004) Calibration of TOPEX/Poseidon and Jason altimeter data to construct a continous record of mean sea level change. Mar Geod 27: 79–94CrossRefGoogle Scholar
  14. Ma C, Sauber JM, Bell LJ, Clark TA, Gordon D, Himwich WE, Ryan JW (1990) Measurement of horizontal motions in Alaska using very long baseline interferometry. J Geophys Res 95(B13): 21991–22011CrossRefGoogle Scholar
  15. MacMillan DS (1995) Atmospheric gradients from very long baseline interferometry observations. Geophys Res Lett 22(9): 1041–1044CrossRefGoogle Scholar
  16. McCarthy D, Petit G (2004) IERS Conventions (2003). IERS Technical Note No 32, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  17. Nastrom GD, Gage KS, Ecklund WL (1986) Variability of turbulence, 420 km, in Colorado and Alaska from MST radar observations. J Geophys Res 91(D6): 6722–6734. doi: 10.1029/JD091iD06p06722 CrossRefGoogle Scholar
  18. Niell A, Whitney A, Petrachenko B, Schlüter W, Vandenberg N, Hase H, Koyama Y, Ma C, Schuh H, Tuccari G (2006) VLBI2010: Current and future requirements for geodetic VLBI systems. In: Behrend D, Karen B (eds) International VLBI Service for Geodesy and Astrometry 2005 Annual Report, NASA/TP-2006-214136:13–40.
  19. Nilsson T, Haas R, Elgered G (2007) Simulations of atmospheric path delays using turbulence models. In: Böhm J, Pany A, Schuh H (eds) Proceedings of the 18th European VLBI for Geodesy and Astrometry Working Meeting, 12–13 April 2007, Geowissenschaftliche Mitteilungen, Heft Nr. 79, Schriftenreihe der Studienrichtung Vermessung und Geoinformation, Technische Universität Wien, ISSN 1811–8380, 175–180.
  20. Nilsson T, Haas R (2008) Modeling tropospheric delays with atmospheric turbulence models. In: Finkelstein A, Behrend D (eds) Measuring the future—Proceedings of the 5th IVS General Meeting, Institute of Applied Astronomy RAS 2008, “Nauka”, ISBN 978-5-02-025332-2, 361-370.
  21. Nilsson T, Haas R (2010) The impact of atmospheric turbulence on geodetic very long baseline interferometry. J Geophys Res 115:B03407. doi: 10.1029/2009JB006579
  22. Nothnagel A, Vennebusch M, Campbell J (2002) On correlations between parameters in geodetic VLBI data analysis. In: Vandenberg NR, Baver K (eds), IVS 2002 General meeting procedures 260–264Google Scholar
  23. Pany A, Wresnik J, Böhm J, Schuh H (2008) Vienna VLBI2010 PPP Simulations. In: Finkelstein A, Behrend D (eds) Measuring the future. Proceedings of the 5th IVS General Meeting, Institute of Applied Astronomy RAS 2008, “Nauka”, ISBN 978-5-02-025332-2, 427–432.
  24. Petrachenko B, Böhm J, MacMillan D, Niell A, Pany A, Searle A, Wresnik J (2008) VLBI2010 Antenna Slew Rate Study. In: Finkelstein A, Behrend D (eds) Measuring the future. Proceedings of the 5th IVS General Meeting, Institute of Applied Astronomy RAS 2008, “Nauka”, ISBN 978-5-02-025332-2, 410–415.
  25. Petrachenko B, Niell A, Behrend D, Corey B, Böhm J, Charlot P, Collioud A, Gipson J, Haas R, Hobiger T, Koyama Y, MacMillan D, Malkin Z, Nilsson T, Pany A, Tuccari G, Whitney A, Wresnik J (2009) Design aspects of the VLBI2010 system—Progress report of the IVS VLBI2010 Committee. In: Behrend D, Baver K (eds) International VLBI Service for Geodesy and Astrometry 2008 annual report, NASA/TP-2009-214183:13–67.
  26. Plag HP, Gross R, Rothacher M (2009) Global geodetic observing system for geohazards and global change. Geosci BRGM’s J Sustain Earth 9: 96–103Google Scholar
  27. Rao DN, Kishore P, Rao TN, Rao SVB, Reddy KK, Yarraiah M, Hareesh M (1997) Studies on refractivity structure constant, eddy dissipation rate, and momentum flux at a tropical latitude. Radio Sci 32(4): 1375–1389. doi: 10.129/97RS00251 CrossRefGoogle Scholar
  28. Rao DN, Rao TN, Venkataratnam M, Thulasiraman S, Rao VB, Srinivasulu P, Rao PB (2001) Diurnal and seasonal variability of turbulence parameters observed with Indian meosphere-stratosphere-troposphere radar. Radio Sci 36(6): 1439–1457. doi: 10.1029/2000RS002316 CrossRefGoogle Scholar
  29. Rummel R, Rothacher M, Beutler G (2005) Integrated Global Geodetic Observing System (IGGOS), Science rationale. J Geodyn 40(4-5): 357–362CrossRefGoogle Scholar
  30. Schlüter W, Behrend D (2007) The international VLBI service for geodesy and astrometry (IVS): current capabilities and future prospects. J Geodyn 81(6-8): 379–387. doi: 10.1007/s00190-006-0131-z Google Scholar
  31. Schön S, Brunner F (2006) Modelling physical correlation of GPS phase observations: first results. In: Kahmen H, Chrzanowski A (eds) Proceedings 3rd symposium on geotechnical and structural engineering, 12th FIG symposium deform Meas, Baden, Austria, MOD3-2.1-10Google Scholar
  32. Tatarskii VI (1971) The effects of the turbulent atmosphere on wave propagation. Israel Program for Scientific Translations, JerusalemGoogle Scholar
  33. Titov O, Tesmer V, Böhm J (2004) Occam v.6.0 software for VLBI data analysis. In: Vandenberg N, Baver K (eds) IVS 2004 general meeting procedure, NASA/CP-2004-212255:267–271Google Scholar
  34. Treuhaft R, Lanyi G (1987) The effect of the dynamic wet troposphere on radio interferometric measurements. Radio Sci 22(2): 251–265CrossRefGoogle Scholar
  35. Wresnik J, Böhm J, Pany A, Schuh H (2009) Toward a new VLBI system for geodesy and astrometry. Adv Geosci, AOGS 2007 A6(13): 167–180Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • A. Pany
    • 1
    Email author
  • J. Böhm
    • 1
  • D. MacMillan
    • 2
  • H. Schuh
    • 1
  • T. Nilsson
    • 1
  • J. Wresnik
    • 1
  1. 1.Institute of Geodesy and GeophysicsVienna University of TechnologyViennaAustria
  2. 2.NVI IncorporatedNASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations