Journal of Geodesy

, Volume 85, Issue 1, pp 23–38 | Cite as

Improved GRACE science results after adjustment of geometric biases in the Level-1B K-band ranging data

  • Martin HorwathEmail author
  • Jean-Michel Lemoine
  • Richard Biancale
  • Stéphane Bourgogne
Original Article


The GRACE (Gravity Recovery and Climate Experiment) satellite mission relies on the inter-satellite K-band microwave ranging (KBR) observations. We investigate systematic errors that are present in the Level-1B KBR data, namely in the geometric correction. This correction converts the original ranging observation (between the two KBR antennas phase centers) into an observation between the two satellites’ centers of mass. It is computed from data on the precise alignment between both satellites, that is, between the lines joining the center of mass and the antenna phase center of either satellite. The Level-1B data used to determine this alignment exhibit constant biases as large as 1–2 mrad in terms of pitch and yaw alignment angles. These biases induce non-constant errors in the Level-1B geometric correction. While the precise origin of the biases remains to be identified, we are able to estimate and reduce them in a re-calibration approach. This significantly improves time-variable gravity field solutions based on the CNES/GRGS processing strategy. Empirical assessments indicate that the systematic KBR data errors have previously induced gravity field errors on the level of 6–11 times the so-called GRACE baseline error level. The zonal coefficients (from degree 14) are particularly affected. The re-calibration reduces their rms errors by about 50%. As examples for geophysical inferences, the improvement enhances agreement between mass variations observed by GRACE and in-situ ocean bottom pressure observations. The improvement also importantly affects estimates of inter-annual mass variations of the Antarctic ice sheet.


GRACE satellite gravimetry Satellite attitude Antenna phase center Ocean bottom pressure Antarctica 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alley R, Spencer K, Anandakrishnan S (2007) Ice-sheet mass balance: assessment, attribution and prognosis. Ann Glaciol 46: 1–7CrossRefGoogle Scholar
  2. Arbinger C, Amico S, Feucht U, Finzi A (2003) The GRACE formation: science mode pointing performance analysis. In: 3rd international workshop on satellite constellations and formations, 24–26 Feb. 2003, PisaGoogle Scholar
  3. Bandikova T, Flury J, Ko U-D (2010) Impact of spacecraft attitude variations on the GRACE scientific results. In: EGU General Assembly, Vienna, May 2010. Geophys Res Abstr, vol 12, pp EGU2010–8319–1Google Scholar
  4. Bettadpur S (2007) GRACE Product Specification Document, Rev. 4.5. Technical Report GRACE 327-720 (CSR-GR-03-02), Center for Space Research, The University of Texas at Austin.
  5. Bettadpur S, Tapley B, Watkins M, Flechtner F (2010) GRACE Mission Status. In: EGU General Assembly, Vienna, May 2010. Geophys Res Abstr, vol 12, pp. EGU2010–1307Google Scholar
  6. Bevis M, Kendrick E, Smalley R Jr, Dalziel I, Caccamise D, Sasgen I, Helsen M, Taylor F, Zhou H, Brown A, Raleigh D, Willis M, Wilson T, Konfal S (2009) Geodetic measurements of vertical crustal velocity in West Antarctica and the implications for ice mass balance. Geochem Geophys Geosyst 10(10): Q10005. doi: 10.1029/2009GC002642 CrossRefGoogle Scholar
  7. Böning C, Timmermann R, Macrander A, Schröter J (2008) A pattern-filtering method for the determination of ocean bottom pressure anomalies from GRACE solutions. Geophys Res Lett 35: L18611. doi: 10.1029/2008GL034974 CrossRefGoogle Scholar
  8. Bruinsma S, Lemoine J-M, Biancale R, Valès N (2010) CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Adv Space Res 45: 587–601. doi: 10.1016/j.asr.2009.10.012 CrossRefGoogle Scholar
  9. Case K, Kruizinga G, Wu S-C (2004) GRACE Level-1b Data Product User Handbook, Revision 1.2. Technical Report JPL D-22027, GRACE 327-733, Jet Propulsion Laboratory, California Institute of Technology.
  10. Chen J, Wilson C, Blankenship D, Tapley B (2009) Accelerated Antarctic ice loss from satellite gravity measurements. Nat Geosci 2: 859–864. doi: 10.1038/ngeo694 CrossRefGoogle Scholar
  11. CSR (2009) Release notes for GRACE L-2 products—version UTCSR RL-04.
  12. Davis E, Dunn C, Stanton R, Thomas J (1999) The GRACE mission: Meeting the technical challenges. Technical Report IAF-99-B.2.05, American Institute of Aeronautics and AstrophysicsGoogle Scholar
  13. Flechtner F, Bettadpur S, Watkins M, Kruizinga G (2005) GRACE Science Data System Monthly Report December 2005. Technical report, GFZ, UTCSR, JPL.
  14. Flury J, Bandikova T, Peterseim N, Ko U (2009) More results on high-resolution analysis of GRACE sensor data. In: Proc. GRACE Science Team Meeting, November 5–6 2009, Austin, Texas. Center for Space Research, The University of Texas at Austin.
  15. Flury J, Bettadpur S, Tapley B (2008) Precise accelerometry onboard the GRACE gravity field satellite mission. Adv Space Res 42: 1414–1423. doi: 10.1016/j.asr.2008.05.004 CrossRefGoogle Scholar
  16. Frommknecht B (2008) Integrated sensor analysis of the GRACE mission. Number 617 in DGK Reihe C. Verlag der Bayerischen Akademie der Wissenschaften, München. ISBN (Print) 3-7696-5056-5, ISSN 0065-5325Google Scholar
  17. Han S-C, Rowlands D, Luthcke S, Lemoine F (2008) Localized analysis of satellite tracking data for studying time-variable Earth’s gravity fields. J Geophys Res 113: B06401. doi: 10.1029/2007JB005218 CrossRefGoogle Scholar
  18. Herman J, Presti D, Codazzi A, Belle C (2004) Attitude control for GRACE. In: ESA SP-548: 18th international symposium on space flight dynamicsGoogle Scholar
  19. Horwath M, Dietrich R (2006) Errors of regional mass variations inferred from GRACE monthly solutions. Geophys Res Lett 33: L07502. doi: 10.1029/2005GL025550 CrossRefGoogle Scholar
  20. Horwath M, Dietrich R (2009) Signal and error in mass change inferences from GRACE: the case of Antarctica. Geophys J Int 177(3): 849–864. doi: 10.1111/j.1365-246X.2009.04139.x CrossRefGoogle Scholar
  21. Horwath M, Legrésy B, Ramillien G, Blarel F, Rémy F, Lemoine J (2009) Consistent patterns of Antarctic ice sheet interannual variations from ENVISAT radar altimetry and GRACE. In: Proc. GRACE Science Team Meeting, November 5–6 2009, Austin, Texas. Center for Space Research, The University of Texas at Austin.
  22. JPL (2009) Release notes for GRACE L-2 calibration products
  23. Kanzow T, Flechtner F, Chave A, Schmidt R, Schwintzer P, Send U (2005) Seasonal variation of ocean bottom pressure derived from Gravity Recovery and Climate Experiment (GRACE): local validation and global patterns. J Geophys Res 110: C09001. doi: 10.1029/2004JC002772 CrossRefGoogle Scholar
  24. Kim J, Roesset P, Bettadpur S, Tapley B, Watkins M (2001) Error analysis of the gravity recovery and climate experiment (GRACE) mission. In: Sideris M (ed) Gravity, geoid and geodynamics 2000. IAG Symposia, vol 123, pp 103–108. Springer, Heidelberg. ISBN-10: 3540424695Google Scholar
  25. Kruizinga G, Bertiger W, Finch C, Kuang D, Watkins M, Yuan D.-N, Bettadpur S, Wang F (2009) GRACE Level-A Status. In: Proc. GRACE Science Team Meeting, December 2009. Center for Space Research, The University of Texas at Austin.
  26. Lemoine J-M, Bruinsma S, Loyer S, Biancale R, Marty J-C, Perosanz F, Balmino G (2007) Temporal gravity field models inferred from GRACE data. Adv Space Res 39(10): 1620–1629. doi: 10.1016/j.asr.2007.03.062 CrossRefGoogle Scholar
  27. Macrander A, Böning C, Boebel O, Schröter J (2010) Validation of GRACE gravity fields by in-situ data of ocean bottom pressure. In: Flechtner F, Mandea M, Gruber T, Rothacher M, Wickert J, Güntner A, Schöne T (eds) System earth via geo- detic-geophysical space techniques. Springer, Berlin. doi: 10.1007/978-3-642-10228-8_34 Google Scholar
  28. Mayer-Gürr T, Kurtenbach E, Eicker A (2009) ITG-Grace04: the new GRACE gravity field release computed in Bonn. In: Proc. GRACE Science Team Meeting, December 2009. Center for Space Research, The University of Texas at Austin.
  29. Morison J, Wahr J, Kwok R, Peralta-Ferriz C (2007) Recent trends in Arctic Ocean mass distribution revealed by GRACE. Geophys Res Lett 34: L07602. doi: 10.1029/2006GL029016 CrossRefGoogle Scholar
  30. Park J, Watts D, Donohue K, Jayne S (2008) A comparison of in situ bottom pressure array measurements with GRACE estimates in the Kuroshio extension. Geophys Res Lett 35: L17601. doi: 10.1029/2008GL034778 CrossRefGoogle Scholar
  31. Priestley, M (eds) (1981) Spectral analysis and time series. Academic Press, LondonGoogle Scholar
  32. Ramillien G, Bouhours S, Lombard A, Cazenave A, Flechtner F, Schmidt R (2008) Land water storage contribution to sea level from GRACE geoid data over 2003–2006. Glob Planet Change 60: 381–392. doi: 10.1016/j.gloplacha.2007.04.002 CrossRefGoogle Scholar
  33. Ramillien G, Lombard A, Cazenave A, Ivins E, Llubes M, Rémy F, Biancale R (2006) Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Glob Planet Change 53: 198–208CrossRefGoogle Scholar
  34. Schmidt R, Flechtner F, Meyer U, Neumayer K-H, Dahle C, König R, Kusche J (2008) Hydrological signals observed by the GRACE satellites. Surv Geophys 29: 319–334CrossRefGoogle Scholar
  35. Schrama E, Wouters B, Lavallée D (2007) Signal and noise in gravity recovery and climate experiment (GRACE) observed surface mass variations. J Geophys Res 112(B08407). doi: 10.1029/2006JB004882
  36. Seeber G (2003) Satellite geodesy, 2nd completely revised and extended edition. Walter de Gruyter, BerlinGoogle Scholar
  37. Seo K-W, Wilson C, Chen J, Waliser D (2008) GRACE’s spatial aliasing error. Geophys J Int 172: 41–48. doi: 10.1111/j.1365-246X.2007.03611.x CrossRefGoogle Scholar
  38. Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9). doi: 10.1029/2004GL019920
  39. Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36: L19503. doi: 10.1029/2009GL040222 CrossRefGoogle Scholar
  40. Velicogna I, Wahr J (2006) Measurements of time-variable gravity show mass loss in Antarctica. Science 311(5768): 1754–1756. doi: 10.1126/science.1123785 CrossRefGoogle Scholar
  41. Wahr J, Swenson S, Velicogna I (2006) The accuracy of GRACE mass estimates. Geophys Res Lett 33: L06401. doi: 10.1029/2005GL025305 CrossRefGoogle Scholar
  42. Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31. doi: 10.1029/2004GL019779
  43. Wiehl M, Dietrich R (2005) Time-variable gravity seen by satellite missions: on its sampling and its parametrization. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds) Earth observation with CHAMP: results from three years in orbit. Springer, Berlin, pp 121–126CrossRefGoogle Scholar
  44. Wu S-C, Kruizinga G, Bertiger W (2006) Algorithm Theoretical Basis Document for GRACE Level-1B Data Processing, V1.2. JPL Publication D-27672, NASA Jet Propulsion Laboratory.

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Martin Horwath
    • 1
    • 2
    • 3
    Email author
  • Jean-Michel Lemoine
    • 3
  • Richard Biancale
    • 3
  • Stéphane Bourgogne
    • 4
  1. 1.LEGOSToulouse Cedex 9France
  2. 2.Institut für Astronomische und Physikalische Geodäsie, Technische Universität MünchenMunichGermany
  3. 3.CNES/GRGSToulouse Cedex 9France
  4. 4.NoveltisRamonville-Saint-AgneFrance

Personalised recommendations