Journal of Geodesy

, Volume 85, Issue 1, pp 9–22 | Cite as

Global sea-level rise and its relation to the terrestrial reference frame

  • Xavier CollilieuxEmail author
  • Guy Wöppelmann
Original Article


We examined the sensitivity of estimates of global sea-level rise obtained from GPS-corrected long term tide gauge records to uncertainties in the International Terrestrial Reference Frame (ITRF) realization. A useful transfer function was established, linking potential errors in the reference frame datum (origin and scale) to resulting errors in the estimate of global sea level rise. Contrary to scale errors that are propagated by a factor of 100%, the impact of errors in the origin depends on the network geometry. The geometry of the network analyzed here resulted in an error propagation factor of 50% for the Z component of the origin, mainly due to the asymmetry in the distribution of the stations between hemispheres. This factor decreased from 50% to less than 10% as the geometry of the network improved using realistic potential stations that did not yet meet the selection criteria (e.g., record length, data availability). Conversely, we explored new constraints on the reference frame by considering forward calculations involving tide gauge records. A reference frame could be found in which the scatter of the regional sea-level rates was limited. The resulting reference frame drifted by 1.36 ± 0.22  mm/year from the ITRF2000 origin in the Z component and by −0.44 ± 0.22 mm/year from the ITRF2005 origin. A bound on the rate of global sea level rise of 1.2 to 1.6 mm/year was derived for the past century, depending on the origin of the adopted reference frame. The upper bound is slightly lower than previous estimates of 1.8 mm/year discussed in the IPCC fourth report.


Sea-level change Vertical land motion Reference Frame ITRF Tide gauges GPS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the international terrestrial reference frame for earth science applications. J Geophys Res 107(B10): 2214. doi: 10.1029/2001JB000561 CrossRefGoogle Scholar
  2. Altamimi Z, Sillard P, Boucher C (2003) The impact of a No-Net-Rotation condition on ITRF2000. Geophys Res Lett 30(2): 1064. doi: 10.1029/2002GL016279 CrossRefGoogle Scholar
  3. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112(B09401). doi: 10.1029/2007JB004949
  4. Altamimi Z, Collilieux X, Boucher C (2008) Accuracy assessment of the ITRF datum definition. In: Xu P, Liu J, Dermanis A (eds) VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy 132:101–110. doi: 10.1007/978-3-540-74584-6_16
  5. Argus D (2007) Defining the translational velocity of the reference frame of Earth. Geophys J Int 169: 830–838. doi: 10.1111/j.1365-246X.2007.03344.x CrossRefGoogle Scholar
  6. Beckley B, Lemoine F, Luthcke S, Ray RD, Zelensky N (2007) A reassessment of global and regional mean sea level trends from TOPEX and Jason-1 altimetry based on revised reference frame and orbits. Geophys Res Lett 34(L14608). doi: 10.1029/2007GL030002
  7. Bevis M, Scherer W, Merrifield M (2002) Technical issues and recommendations related to the installation of continuous GPS stations at tide gauges. Mar Geod 25(1–2): 87–99CrossRefGoogle Scholar
  8. Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, Shum C, Talley LD, Unnikrishnan A (2007) Observations: oceanic climate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis, Cambridge University Press, Cambridge and New York. Contribution of Working Group I to the Fourth Assessment Report of the Intergouvernmental Panel on Climate ChangeGoogle Scholar
  9. Blewitt G (2004) Fundamental ambiguity in the definition of vertical motion. In: van Dam T, Francis O (eds) Cahiers du Centre Européen de Géodynamique & de Sismologie, vol 23, pp 1–4Google Scholar
  10. Blewitt G, Altamimi Z, Davis JL, Gross RS, Kuo C, Lemoine F, Moore AW, Neilan R, Plag H, Rothacher M, Shum C, Sideris M, Schöne T, Tregoning P, Zerbini S (2010) Geodetic observations and global reference frame contributions to understanding sea level rise and variability. In: Church J, Woodworth PL, Aarup T, Wilson S (eds) Understanding sea level Rise and variability. Wiley-Blackwell, London, pp 256–284Google Scholar
  11. Bouin MN, Wöppelmann G (2010) Land motion estimates from GPS at tide gauges: a geophysical evaluation. Geophys J Int 180: 193–209. doi: 10.1111/j.1365-246X.2009.04411.x CrossRefGoogle Scholar
  12. Cazenave A, Dominh K, Ponchaut F, Soudarin L, Crétaux J, Le Provost C (1999) Sea level changes from Topex-Poseidon altimetry and tide gauges, and vertical crustal motions from DORIS. Geophys Res Lett 26(14): 2077–2080. doi: 10.1029/1999GL900472 CrossRefGoogle Scholar
  13. Conrad C, Hager BH (1997) Spatial variations in the rate of sea level rise caused by the present-day melting of glaciers and ice sheets. Geophys Res Lett 24(12): 1503–1506. doi: 10.1029/97GL01338 CrossRefGoogle Scholar
  14. Dong D, Yunck T, Heflin M (2003) Origin of the international terrestrial reference frame. J Geophys Res 108(B4): 2200. doi: 10.1029/2002JB002035 CrossRefGoogle Scholar
  15. Douglas B (2001) Sea level change in the era of the recording tide gauge. In: B Douglas MK, Leatherman S (eds) Sea Level Rise: history and consequences, Academic, San Diego, California, International. Geophysics Series, vol 75, pp 37–64Google Scholar
  16. Douglas B (2008) Concerning evidence for fingerprints of glacial melting. J Coast Res 24(2B): 218–227. doi: 10.2112/06-0748.1 CrossRefGoogle Scholar
  17. Farrell WE (1972) Deformation of the earth by surface loads. Rev Geophys 10: 761–797. doi: 10.1029/RG010i003p00761 CrossRefGoogle Scholar
  18. Holgate SJ (2007) On the decadal rates of sea level change during the twentieth century. Geophys Res Lett 34(L01602) doi: 10.1029/2006GL028492
  19. Ishii M, Kimoto M, Sakamoto K, Iwasaki SI (2006) Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. J Oceanogr 62: 155–170. doi: 10.1007/s10872-006-0041-y CrossRefGoogle Scholar
  20. Jevrejeva S, Moore JC, Grinsted A, Woodworth P (2008) Recent global sea level acceleration started over 200 years ago?. Geophys Res Lett 35(L08715): 8715. doi: 10.1029/2008GL033611 CrossRefGoogle Scholar
  21. Kogan MG, Steblov GM (2008) Current global plate kinematics from GPS (1995–2007) with the plate-consistent reference frame. J Geophys Res 113(B12): 4416. doi: 10.1029/2007JB005353 CrossRefGoogle Scholar
  22. Kovalevsky, J, Mueller, I, Kolaczek, B (eds) (1989) Reference frames in astronomy and geophysics. Kluwer Academic Publisher, DordrechtGoogle Scholar
  23. Kuo C, Shum C, Braun A, Mitrovica JX (2004) Vertical crustal motion determined by satellite altimetry and tide gauge data in Fennoscandia. Geophys Res Lett 31: L01,608. doi: 10.1029/2003GL019106 Google Scholar
  24. Langbein J, Johnson H (1997) Correlated errors in geodetic time series: implications for time-dependent deformation. J Geophys Res 102: 591–604. doi: 10.1029/96JB02945 CrossRefGoogle Scholar
  25. Lemoine F, Zelensky N, Chinn D, Pavlis D, Rowlands D, Beckley B, Luthcke S, Willis P, Ziebart M, Sibthorpe A, Boy JP, Luceri V (2010) Towards development of a consistent orbit series for TOPEX/Poseidon, Jason-1, and Jason-2. Adv Space Res, (inpress). doi: 10.1016/j.asr.2010.05.007
  26. Mazzotti S, Jones C, Thomson RE (2008) Relative and absolute sea level rise in western Canada and northwestern United States from a combined tide gauge-GPS analysis. J Geophys Res 113(C12): 11,019. doi: 10.1029/2008JC004835 Google Scholar
  27. McCarthy D, Petit G (2004) IERS Technical Note 32 - IERS Conventions (2003). Tech. rep., Verlag des Bundesamts fur Kartographie und Geodasie, Frankfurt am Main, Germany, also available at
  28. Merrifield M, Aarup T, Aman A, Caldwell P, Fernandes RMS, Hayashibara H, Kilonsky B, Martin Miguez B, Mitchum G, Perez Gomez B, Rickards L, Rosen D, Schöne T, Testut L, Woodworth P, Wöppelmann G (2009a) The global sea level observing system (GLOSS. In: OceanObs, Ocean Information for society: sustaining the benefits, organizing the potential, Community White Papers, 21–25 September 2009, Venice, ItalyGoogle Scholar
  29. Merrifield M, Merrifield ST, Mitchum GT (2009b) An anomalous recent acceleration of global sea level rise. J Clim 22: 5772–5781. doi: 10.1175/2009JCLI2985.1 CrossRefGoogle Scholar
  30. Mitrovica JX, Tamisiea M, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409: 1026–1029CrossRefGoogle Scholar
  31. Morel L, Willis P (2005) Terrestrial reference frame effects on global sea level rise determination from TOPEX/Poseidon altimetric data. Adv Space Res 36: 358–368. doi: 10.1016/j.asr.2005.05.113 CrossRefGoogle Scholar
  32. Moritz H (1989) Advanced physical geodesy. 2. Wichmann edn, WichmannGoogle Scholar
  33. Nerem RS, Mitchum GT (2002) Estimates of vertical crustal motion derived from differences of TOPEX/POSEIDON and tide gauge sea level measurements. Geophys Res Lett 29(19), 1934. doi: 10.1029/2002GL015037
  34. Nerem RS, Eanes R, Ries J, Mitchum GT (2000) The use of a precise reference frame in sea level change studies. In: Rummel R, Drewes H, Bosch W, Hornik H (eds) Towards an integrated global geodetic observing system (IGGOS), IAG, Springer, International Association of Geodesy Symposia, vol 120, pp 8–12Google Scholar
  35. Peltier W (1999) Global sea level rise and glacial isostatic adjustment. Global Planet Change 20: 93–123. doi: 10.1016/S0921-8181(98)00066-6 CrossRefGoogle Scholar
  36. Peltier W (2004) Global glacial isostasy and the surface of the ice-age earth: the ice-5g (vm2) model and grace. Annu Rev Earth Planet Sci 32: 111–149. doi: 10.1146/ CrossRefGoogle Scholar
  37. Plag H, Hammond W, Kreemer C (2007) Combination of GPS-derived vertical motion with absolute gravity changes constrain the tie between reference frame origin and Earth center of mass, poster presented at the EarthScope National Meeting, Monterey, CAGoogle Scholar
  38. Prandi P, Cazenave A, Becker M (2009) Is coastal mean sea level rising faster than the global mean? A comparison between tide gauges and satellite altimetry over 1993–2007. Geophys Res Lett 36: 5602. doi: 10.1029/2008GL036564 CrossRefGoogle Scholar
  39. Schöne T, Schön N, Thaller D (2009) IGS Tide Gauge Benchmark Monitoring Pilot Project (TIGA): scientific benefits. J Geodesy 83(13): 249–261. doi: 10.1007/s00190-008-0269-y CrossRefGoogle Scholar
  40. Teferle FN, Bingley RM, Williams S, Baker T, Dodson AH (2006) Using continuous GPS and absolute gravity to separate land movements and changes in sea-level at tide gauges in the UK. Phil Trans R Soc A 364(1841): 917–930. doi: 10.1098/rsta.2006.1746 CrossRefGoogle Scholar
  41. Teferle FN, Bingley RM, Orliac EJ, Williams S, Woodworth P, McLaughlin D, Baker T, Shennan I, Milne GA, Bradley SL, Hansen DN (2009) Crustal motions in Great Britain: evidence from continuous GPS, absolute gravity and Holocene sea level data. Geophys J Int 178: 23–46. doi: 10.1111/j.1365-246X.2009.04185.x CrossRefGoogle Scholar
  42. Testut L, Wöppelmann G, Simon B, Téchiné P (2006) The sea level at Port-aux-Français, Kerguelen Island, from 1949 to the present. Ocean Dyn 56(5–6): 464–472CrossRefGoogle Scholar
  43. Williams S (2008) CATS: GPS coordinate time series analysis software. GPS Solut 12(2): 147–153. doi: 10.1007/s10291-007-0086-4 CrossRefGoogle Scholar
  44. Woodworth P, Player R (2003) The Permanent Service for Mean Sea Level: an update to the 21st century. J Coast Res 19: 287–295Google Scholar
  45. Woodworth P, Pugh DT, Meredith MP, Blackman DL (2005) Sea level changes at Port Stanley, Falkland Islands. J Geophys Res 110(C9): 6013. doi: 10.1029/2004JC002648 CrossRefGoogle Scholar
  46. Wöppelmann G, Zerbini S, Marcos M (2006) Tide gauges and Geodesy: a secular synergy illustrated by three present-day case studies. C R Geosci 338: 980–991. doi: 10.1016/j.crte.2006.07.006 CrossRefGoogle Scholar
  47. Wöppelmann G, Martín Míguez B, Bouin MN, Altamimi Z (2007) Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide. Global Planet Change 57(3–4): 396–406. doi: 10.1016/j.gloplacha.2007.02.002 CrossRefGoogle Scholar
  48. Wöppelmann G, Pouvreau N, Coulomb A, Simon B, Woodworth P (2008) Tide gauge datum continuity at Brest since 1711: France’s longest sea-level record. Geophys Res Lett 35: 22,605. doi: 10.1029/2008GL035783 CrossRefGoogle Scholar
  49. Wöppelmann G, Letretel C, Santamaría A, Bouin MN, Collilieux X, Altamimi Z, Williams S, Martín Míguez B (2009) Rates of sea-level change over the past century in a geocentric reference frame. Geophys Res Lett 36(L12607). doi: 10.1029/2009GL038720
  50. Zhang J, Bock Y, Johnson H, Fang P, Williams S, Genrich J, Wdowinski S, Behr J (1997) Southern California Permanent GPS Geodetic Array: Error analysis of daily position estimates and site velocities. J Geophys Res 102: 18035–18056. doi: 10.1029/97JB01380 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.IGN/LAREG et GRGSMarne La Vallée Cedex 2France
  2. 2.Université de La Rochelle, CNRSLa RochelleFrance

Personalised recommendations