Journal of Geodesy

, Volume 84, Issue 11, pp 661–681 | Cite as

The celestial mechanics approach: application to data of the GRACE mission

  • Gerhard BeutlerEmail author
  • Adrian Jäggi
  • Leoš Mervart
  • Ulrich Meyer
Original Article


The celestial mechanics approach (CMA) has its roots in the Bernese GPS software and was extensively used for determining the orbits of high-orbiting satellites. The CMA was extended to determine the orbits of Low Earth Orbiting satellites (LEOs) equipped with GPS receivers and of constellations of LEOs equipped in addition with inter-satellite links. In recent years the CMA was further developed and used for gravity field determination. The CMA was developed by the Astronomical Institute of the University of Bern (AIUB). The CMA is presented from the theoretical perspective in (Beutler et al. 2010). The key elements of the CMA are illustrated here using data from 50 days of GPS, K-Band, and accelerometer observations gathered by the Gravity Recovery And Climate Experiment (GRACE) mission in 2007. We study in particular the impact of (1) analyzing different observables [Global Positioning System (GPS) observations only, inter-satellite measurements only], (2) analyzing a combination of observations of different types on the level of the normal equation systems (NEQs), (3) using accelerometer data, (4) different orbit parametrizations (short-arc, reduced-dynamic) by imposing different constraints on the stochastic orbit parameters, and (5) using either the inter-satellite ranges or their time derivatives. The so-called GRACE baseline, i.e., the achievable accuracy of the GRACE gravity field for a particular solution strategy, is established for the CMA.


Celestial mechanics Orbit determination Global gravity field modeling CHAMP GRACE-K-Band GRACE accelerometers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bettadpur S (2007) GRACE 327-720 (CSR-GR-03-02) Gravity recovery and climate experiment product specification document (Rev 4.5, February 20, 2007), Center for Space Research, the University of Texas at AustinGoogle Scholar
  2. Beutler G, A Jäggi, U Meyer, L Mervart (2010) The celestial mechanics approach: theoretical foundations. J Geod. doi: 10.1007/s00190-010-0401-7
  3. Dach R, Hugentobler U, Meindl M, Fridez P (eds) (2007) The Bernese GPS Software Version 5.0, Astronomical Institute, University of BernGoogle Scholar
  4. Descartes R (1637) Discours de la methode Pour bien conduire sa raison, & chercher la verité dans les sciences, Plus la dioptriuve, les meteores, et la geometrie, Qui sont des essais de cete Methode. A Leyde, De l’Imprimerie de Ian Maire MDCXXXVIIGoogle Scholar
  5. Ditmar P, Klees R, Liu X (2007) Frequency-dependent data weighting in global gravity field modeling from satellite data contaminated by non-stationary noise. J Geod 81: 81–96. doi: 10.1007/s00190-006-0074-4 CrossRefGoogle Scholar
  6. Förste C, Flechtner F, Schmidt R, Stubenvoll R, Rothacher M, Kusche J, Neumayer KH, Biancale R, Lemoine JM, Barthelmes F, Bruinsma S, König R, Meyer U (2008) EIGEN-GL05C—a new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophysical Research Abstracts, vol 10Google Scholar
  7. Jäggi A (2007) Pseudo-stochastic orbit modeling of low earth satellites using the Global Positioning System. Geodätisch-geophysikalische Arbeiten in der Schweiz, Vol 73, Schweizerische Geodätische Kommission, Institut für Geodäsie und Photogrammetrie, Eidg. Technische Hochschule, ZürichGoogle Scholar
  8. Jäggi A, Beutler G, Prange L, Meyer U, Mervart L, Dach R, Rummel R, Gruber T (2009) Gravity field determination at AIUB: current activities. EGU General Assembly 2009, EGU2009-8714Google Scholar
  9. Jäggi A, Beutler G, Meyer U, Mervart L, Prange L, Dach R (2010) AIUB-GRACE02S—status of GRACE gravity field recovery using the celestial mechanics approach. International Association of Geodesy Symposium (accepted for publication)Google Scholar
  10. Kim J (2000) Simulation study of a low-low satellite-to-satellite tracking mission. Ph D Dissertation, The University of Texas at Austin, May 2000Google Scholar
  11. Lemoine FG, Smith DE, Kunz L, Smith R, Pavlis NK, Klosko SM, Chinn DS, Torrence MH, Willamson RG, Cox CM, Rachlin KE, Wang YM, Kenyon SC, Salman R, Trimmer R, Rapp RH, Nerem RS (1997) The development of the NASA GSFC and NIMA Joint Geopotential Model. In: Segawa J, Fujimoto H, Okubo S (eds) IAG symposia gravity, geoid and marine geodesy. Springer, Berlin, pp 461–469Google Scholar
  12. Meyer U, Flechtner F, Schmidt R, Frommknecht B (2009) A simulation study discussing the GRACE baseline accuracy. International association of geodesy symposium (accepted for publication)Google Scholar
  13. Prange L, Jäggi A, Beutler G, Mervart L, Dach R (2009) Gravity field determination at the AIUB—the Celestial mechanics approach. In: Sideris MG (ed) Observing our changing Earth. Springer, Berlin, pp 353–362. doi: 10.1007/978-3-540-85426-5-42
  14. Prange L, Jäggi A, Bock H, Dach R (2010) The AIUB-CHAMP02S and the influence of GNSS model changes on gravity field recovery using spaceborne GPS. Adv Space Res 45(2): 215–224. doi: 10.1016/j.asr.2009.09.020 CrossRefGoogle Scholar
  15. Thomas J.B. (1999) An analysis of gravity-field estimation based on intersatellite dual-1-way biased ranging. JPL Publication 98-15
  16. Touboul P, Willemenot E, Foulon B, Josselin V (1999) Accelerometers for CHAMP, GRACE and GOCE space missions: synergy and evolution. Boll Geof Teor Appl 40: 321–327Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Gerhard Beutler
    • 1
    Email author
  • Adrian Jäggi
    • 1
  • Leoš Mervart
    • 2
  • Ulrich Meyer
    • 1
  1. 1.Astronomical InstituteUniversity of BernBernSwitzerland
  2. 2.Institute of Advanced GeodesyCzech Technical UniversityPrague 6-DejviceCzech Republic

Personalised recommendations