Journal of Geodesy

, Volume 84, Issue 9, pp 569–581 | Cite as

Integer ambiguity resolution in precise point positioning: method comparison

  • Jianghui GengEmail author
  • Xiaolin Meng
  • Alan H. Dodson
  • Felix N. Teferle
Original Article


Integer ambiguity resolution at a single receiver can be implemented by applying improved satellite products where the fractional-cycle biases (FCBs) have been separated from the integer ambiguities in a network solution. One method to achieve these products is to estimate the FCBs by averaging the fractional parts of the float ambiguity estimates, and the other is to estimate the integer-recovery clocks by fixing the undifferenced ambiguities to integers in advance. In this paper, we theoretically prove the equivalence of the ambiguity-fixed position estimates derived from these two methods by assuming that the FCBs are hardware-dependent and only they are assimilated into the clocks and ambiguities. To verify this equivalence, we implement both methods in the Position and Navigation Data Analyst software to process 1 year of GPS data from a global network of about 350 stations. The mean biases between all daily position estimates derived from these two methods are only 0.2, 0.1 and 0.0 mm, whereas the standard deviations of all position differences are only 1.3, 0.8 and 2.0 mm for the East, North and Up components, respectively. Moreover, the differences of the position repeatabilities are below 0.2 mm on average for all three components. The RMS of the position estimates minus those from the International GNSS Service weekly solutions for the former method differs by below 0.1 mm on average for each component from that for the latter method. Therefore, considering the recognized millimeter-level precision of current GPS-derived daily positions, these statistics empirically demonstrate the theoretical equivalence of the ambiguity-fixed position estimates derived from these two methods. In practice, we note that the former method is compatible with current official clock-generation methods, whereas the latter method is not, but can potentially lead to slightly better positioning quality.


Precise point positioning Ambiguity resolution Fractional-cycle bias Integer-recovery clock Decoupled clock model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altamimi Z, Collilieux X (2009) IGS contribution to the ITRF. J Geod 83(3–4): 375–383CrossRefGoogle Scholar
  2. Bar-Sever YE, Kroger PM, Borjesson JA (1998) Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. J Geophys Res 103(B3): 5019–5035CrossRefGoogle Scholar
  3. Blewitt G (1989) Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km. J Geophys Res 94(B8): 10187–10203CrossRefGoogle Scholar
  4. Blewitt G (2008) Fixed point theorems of GPS carrier phase ambiguity resolution and their application to massive network processing: Ambizap. J Geophys Res 113(B12): B12410. doi: 10.1029/2008JB005736 CrossRefGoogle Scholar
  5. Collins P (2008) Isolating and estimating undifferenced GPS integer ambiguities. In: Proceedings of ION national technical meeting, San Diego, US, pp 720–732Google Scholar
  6. Collins P, Lahaye F, Héroux P, Bisnath S (2008) Precise point positioning with ambiguity resolution using the decoupled clock model. In: Proceedings of ION GNSS 21st international technical meeting of the satellite division, Savannah, US, pp 1315–1322Google Scholar
  7. Dach R, Brockman E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4): 353–365CrossRefGoogle Scholar
  8. Defraigne P, Bruyninx C (2007) On the link between GPS pseudorange noise and day-boundary discontinuities in geodetic time transfer solutions. GPS Solut 11(4): 239–249CrossRefGoogle Scholar
  9. Dong D, Bock Y (1989) Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res 94(B4): 3949–3966CrossRefGoogle Scholar
  10. Dow J, Neilan R, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3-4): 191–198CrossRefGoogle Scholar
  11. Gabor MJ, Nerem RS (1999) GPS carrier phase ambiguity resolution using satellite-satellite single difference. In: Proceedings of ION GNSS 12th international technical meeting of the Satellite Division, Nashville, US, pp 1569–1578Google Scholar
  12. Ge M, Gendt G, Dick G, Zhang FP (2005) Improving carrier-phase ambiguity resolution in global GPS network solutions. J Geod 79(1-3): 103–110CrossRefGoogle Scholar
  13. Ge M, Gendt G, Dick G, Zhang FP, Rothacher M (2006) A new data processing strategy for huge GNSS global networks. J Geod 80(4): 199–203CrossRefGoogle Scholar
  14. Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82(7): 389–399CrossRefGoogle Scholar
  15. Geng J, Teferle FN, Shi C, Meng X, Dodson AH, Liu J (2009) Ambiguity resolution in precise point positioning with hourly data. GPS Solut 13(4): 263–270CrossRefGoogle Scholar
  16. Geng J, Meng X, Teferle FN, Dodson AH (2010a) Performance of precise point positioning with ambiguity resolution for 1- to 4-hour observation periods. Surv Rev 42(316): 155–165Google Scholar
  17. Geng J, Teferle FN, Meng X, Dodson AH (2010b) Kinematic precise point positioning at remote marine platforms. GPS Solut. doi: 10.1007/s10291-009-0157-9 Google Scholar
  18. Geng J, Teferle FN, Meng X, Dodson AH (2010c) Towards PPP-RTK: Ambiguity resolution in real-time precise point positioning. Adv Space Res. doi: 10.1016/j.asr.2010.03.030 Google Scholar
  19. King M, Colemar R, Nguyen LN (2003) Spurious periodic horizontal signals in sub-daily GPS position estimates. J Geod 77(1–2): 15–21CrossRefGoogle Scholar
  20. Kouba J (2009) Testing of global pressure/temperature (GPT) model and global mapping function (GMF) in GPS analyses. J Geod 83(3–4): 199–208CrossRefGoogle Scholar
  21. Laurichesse D, Mercier F, Berthias JP, Broca P, Cerri L (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navig J Inst Navig 56(2): 135–149Google Scholar
  22. McCarthy DD, Petit G (eds) (2004) IERS 2003 conventions. Verlag des Bundes für Kartographie und Geodäsie, Frankfurt am Main, Germany, pp 127Google Scholar
  23. Melbourne WG (1985) The case for ranging in GPS-based geodetic systems. In: Proceedings of first international symposium on precise positioning with the global positioning system, Rockville, US, pp 373–386Google Scholar
  24. Mercier F, Laurichesse D (2008) Zero-difference ambiguity blocking properties of satellite/receiver widelane biases. In: Proceedings of European navigation conference, Toulouse, FranceGoogle Scholar
  25. Meyer CD (2000) Matrix analysis and applied linear algebra. Soc Ind Appl Math, Philadelphia, p 718Google Scholar
  26. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J Geod 81(12): 781–798CrossRefGoogle Scholar
  27. Shi C, Zhao Q, Geng J, Lou Y, Ge M, Liu J (2008) Recent development of PANDA software in GNSS data processing. In: Proceedings of the Society of Photographic Instrumentation Engineers, vol 7285, p 72851S. doi: 10.1117/12.816261
  28. Teferle FN, Orliac EJ, Bingley RM (2007) An assessment of Bernese GPS software precise point positioning using IGS final products for global site velocities. GPS Solut 11(3): 205–213CrossRefGoogle Scholar
  29. Teunissen, PJG, Kleusberg, A (eds) (1998) GPS for Geodesy, 2nd edn. Springer, Berlin, pp 188–194Google Scholar
  30. Tregoning P, Watson C (2009) Atmospheric effects and spurious signals in GPS analysis. J Geophys Res 114: B09403. doi: 10.1029/2009JB006344 CrossRefGoogle Scholar
  31. Wu JT, Wu SC, Hajj GA, Bertiger WI, Lichten SM (1993) Effects of antenna orientation on GPS carrier phase. Manuscr Geodaet 18(2): 91–98Google Scholar
  32. Wübbena G (1985) Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. In: Proceedings of first international symposium on precise positioning with the global positioning system, Rockville, US, pp 403–412Google Scholar
  33. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3): 5005–5017CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jianghui Geng
    • 1
    Email author
  • Xiaolin Meng
    • 1
  • Alan H. Dodson
    • 1
  • Felix N. Teferle
    • 1
  1. 1.Institute of Engineering Surveying and Space GeodesyUniversity of NottinghamNottinghamUK

Personalised recommendations