Journal of Geodesy

, Volume 84, Issue 7, pp 405–417 | Cite as

Numerical simulation of troposphere-induced errors in GPS-derived geodetic time series over Japan

  • H. MunekaneEmail author
  • J. Boehm
Original Article


Troposphere-induced errors in GPS-derived geodetic time series, namely, height and zenith total delays (ZTDs), over Japan are quantitatively evaluated through the analyses of simulated GPS data using realistic cumulative tropospheric delays and observed GPS data. The numerical simulations show that the use of a priori zenith hydrostatic delays (ZHDs) derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) numerical weather model data and gridded Vienna mapping function 1 (gridded VMF1) results in smaller spurious annual height errors and height repeatabilities (0.45 and 2.55 mm on average, respectively) as compared to those derived from the global pressure and temperature (GPT) model and global mapping function (GMF) (1.08 and 3.22 mm on average, respectively). On the other hand, the use of a priori ZHDs derived from the GPT and GMF would be sufficient for applications involving ZTDs, given the current discrepancies between GPS-derived ZTDs and those derived from numerical weather models. The numerical simulations reveal that the use of mapping functions constructed with fine-scale numerical weather models will potentially improve height repeatabilities as compared to the gridded VMF1 (2.09 mm against 2.55 mm on average). However, they do not presently outperform the gridded VMF1 with the observed GPS data (6.52 mm against 6.50 mm on average). Finally, the commonly observed colored components in GPS-derived height time series are not primarily the result of troposphere-induced errors, since they become white in numerical simulations with the proper choice of a priori ZHDs and mapping functions.


GPS Simulation Numerical weather models Troposphere-induced errors A priori hydrostatic delays Mapping functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnew DC (1997) NLOADF: a program for computing ocean-tide loading. J Geophys Res 102(B3): 5109–5110CrossRefGoogle Scholar
  2. Bar-Sever YE, Kroger PM, Borjesson JA (1998) Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. J Geophys Res 103(B3): 5019–5035CrossRefGoogle Scholar
  3. Boehm J, Werl B, Schuh H (2006a) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111: B02406. doi: 10.1029/2005JB003629 CrossRefGoogle Scholar
  4. Boehm J, Niell A, Tregoning P, Schuh H (2006b) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33: L07304. doi: 10.1029/2005GL025546 CrossRefGoogle Scholar
  5. Boehm J, Heinkelmann R, Schuh H (2007) A global model of pressure and temperature for geodetic applications. J Geod 81(10): 679–683. doi: 10.1007/s00190-007-0135-3 CrossRefGoogle Scholar
  6. Dach, R, Hugentobler, U, Fridez, P, Meindl, M (eds) (2007) Bernese GPS software version 5.0 user manual. Astronomical Institute, University of Bern, BernGoogle Scholar
  7. Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20(6): 1593–1607CrossRefGoogle Scholar
  8. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4): 191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  9. Gurtner W, Estey L (2007) RINEX: the receiver independent exchange format version 2.11. IGS Central Bureau. Accessed 08 December 2009
  10. Hatanaka Y, Sawada M, Horita A, Kusaka M (2001) Calibration of antenna-radome and monument-multipath effect of GEONET-Part 1: measurement of phase characteristics. Earth Planets Space 53(1): 13–21Google Scholar
  11. Haurwitz B (1941) Dynamic meteorology. McGraw-Hill, New YorkGoogle Scholar
  12. Heki K (2001) Seasonal modulation of interseismic strain buildup in north-eastern Japan driven by snow loads. Science 293(5527): 89–92CrossRefGoogle Scholar
  13. Hobiger T, Ichikawa R, Takasu T, Koyama Y, Kondo T (2009) Ray-traced troposphere slant delays for precise point positioning. Earth Planets Space 60(5): e1–e4Google Scholar
  14. JMA (2007) Outline of the operational numerical weather prediction at the Japan Meteorological Agency. Japan Meteorological Agency. Accessed 15 December 2009
  15. Kouba J (2008) Implementation and testing of the gridded Vienna mapping function 1 (VMF1). J Geod 82(4–5): 193–205. doi: 10.1007/s00190-007-0170-0 CrossRefGoogle Scholar
  16. Kouba J (2009) Testing of global pressure/temperature (GPT) model and global mapping function (GMF) in GPS analyses. J Geod 83(3–4): 199–208. doi: 10.1007/s00190-008-0229-6 CrossRefGoogle Scholar
  17. Langbein J, Johnson H (1997) Correlated errors in geodetic time series: Implications for time-dependent deformation. J Geophys Res 102(B1): 591–603CrossRefGoogle Scholar
  18. Matsumoto K, Takanezawa T, Ooe M (2000) Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan. J Oceanogr 56(5): 567–581CrossRefGoogle Scholar
  19. Matsumoto K, Sato T, Takanezawa T, Ooe M (2001) GOTIC2: a program for computation of oceanic tidal loading effect. J Geod Soc Jpn 47: 243–248Google Scholar
  20. Miyazaki S, Saito T, Sasaki S, Hatanaka Y, Iimura Y (1997) Expansion of GSI’s nationwide GPS array. Bull Geogr Surv Inst 43: 23–34Google Scholar
  21. Munekane H (2005) A semi-analytical estimation of the effect of second-order ionospheric correction on the GPS positioning. Geophys J Int 163(1): 10–17. doi: 10.1111/j.1365-246X.2005.02723.x CrossRefGoogle Scholar
  22. Munekane H (2007) Ocean mass variations from GRACE and tsunami gauges. J Geophys Res 112: B07403. doi: 10.1028/2006JB004618 CrossRefGoogle Scholar
  23. Munekane H, Kuroishi Y, Hatanaka Y, Yarai H (2008) Spurious annual vertical deformations over Japan due to mismodelling of tropospheric delays. Geophys J Int 175(3): 831–836. doi: 10.1111/j.1365-246X.2008.03980.x CrossRefGoogle Scholar
  24. Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2): 3227–3246CrossRefGoogle Scholar
  25. Nilsson T, Davis JL, Hill EM (2009) Using ground-based GPS to characterize atmospheric turbulence. Geophys Res Lett 36: L16807. doi: 10.1029/2009GL040090 CrossRefGoogle Scholar
  26. Ohtsuka T, Takahashi H, Fukushima Y, Isaka T, Masaharu H (1997) Expression of three-dimensional space with digital cartographic data and computer graphics method. Bull Geogr Surv Inst 43: 35–41Google Scholar
  27. Penna NT, King MA, Stewart MP (2007) GPS height time series: Short-period origins of spurious long-period signals. J Geophys Res 112: B02402. doi: 10.1029/2005J004047 CrossRefGoogle Scholar
  28. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  29. Ray J, Altamimi Z (2005) Evaluation of co-location ties relating the VLBI and GPS reference frames. J Geod 79(4–5): 189–195. doi: 10.1007/s00190-005-0456-z CrossRefGoogle Scholar
  30. Ray J, Altamimi Z, Collilieux X, van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12(1): 55–64. doi: 10.1007/s10291-007-0067-7 CrossRefGoogle Scholar
  31. Shoji Y, Kunii M, Saito K (2009) Assimilation of nationwide and global GPS PWV data for a heavy rain event on 28 July 2008 in Hokuriku and Kinki, Japan. SOLA 5: 45–48. doi: 10.2151/sola.2009-012 CrossRefGoogle Scholar
  32. Steigenberger P, Boehm J, Tesmer V (2009) Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. J Geod 83(10): 943–951. doi: 10.1007/s00190-009-0311-8 CrossRefGoogle Scholar
  33. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305(5683): 503–506CrossRefGoogle Scholar
  34. Tregoning P, Herring TA (2006) Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophys Res Lett 33: L23303. doi: 10.1029/2006GL027706 CrossRefGoogle Scholar
  35. Tregoning P, Watson C (2009) Atmospheric effects and spurious signals in GPS analyses. J Geophys Res 114: B09403. doi: 10.1029/2009JB006344 CrossRefGoogle Scholar
  36. Williams SDP, Bock Y, Fang P, Jamason P, Nikolaidis RM, Prawirodirdjo P (2004) Error analysis of continuous GPS position time series. J Geophys Res 109: B03412. doi: 10.1029/2003JB002741 CrossRefGoogle Scholar
  37. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large network. J Geophys Res 102(B3): 5005–5018CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Geographical Survey InstituteTsukubaJapan
  2. 2.Vienna University of TechnologyViennaAustria

Personalised recommendations