Journal of Geodesy

, Volume 84, Issue 5, pp 305–317 | Cite as

Ocean loading effects on the prediction of Antarctic glacial isostatic uplift and gravity rates

  • Karen M. Simon
  • Thomas S. James
  • Erik R. Ivins
Original Article

Abstract

The effect of regional ocean loading on predicted rates of crustal uplift and gravitational change due to glacial isostatic adjustment (GIA) is determined for Antarctica. The effect is found to be significant for the ICE-3G and ICE-5G loading histories (up to −8 mm/year and −3 mm/year change in uplift rate and −3 cm/year and −1 cm/year equivalent water height change (EWHC) of surface mass, respectively). The effect is smaller (+1 mm/year; +0.25 cm/year) for the IJ05 loading history. The impact of ocean loading on the rate of change of the long-wavelength zonal harmonics of the Earth’s gravitational field is also significantly smaller for IJ05 than ICE-3G. A simple analytical formula is derived that is accurate to about 3% in a root-mean-square sense that relates predicted or observed gravitational change at the surface of the Earth (r = a) to the EWHC. A fundamental difference in the definition of the load histories accounts for the differing sensitivities to ocean loading. IJ05 defines its surface load history relative to the present-day surface load, rather than specifying an absolute loading history, and thus implicitly approximates the temporal and spatial mass exchange between grounded ice and open ocean. In contrast, ICE-3G and ICE-5G specify an absolute load history and explicit regional ocean loading substantially perturbs predicted GIA rates. Conclusions of previous studies that used IJ05 predictions without ocean loading are relatively robust.

Keywords

Glacial isostatic adjustment Antarctica GRACE Gravity change Crustal movement GPS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackert RP, Mukhopadhyay S, Parizek BR, Borns HW (2007) Ice elevation near the West Antarctic Ice Sheet divide during the last glaciation. Geophys Res Lett 34: L21506. doi:10.1029/2007GL031412 CrossRefGoogle Scholar
  2. Ackert RP, Barclay DJ, Borns HW Jr, Calkin PE, Kurz MD, Fastook JL, Steig EJ (1999) Measurements of past ice sheet elevations in interior West Antarctica. Science 286: 276–280CrossRefGoogle Scholar
  3. Amalvict M, Willis P, Wöppelmann G, Ivins ER, Bouin M-N, Testut L, Hinderer J (2009) Isostatic stability of the East Antarctic station Dumont d’Urville from long-term geodetic observations and geophysical models. Polar Res. doi:10.1111/j.1751-8369.2008.00091.x
  4. Barletta VR, Sabadini R, Bordoni A (2008) Isolating the PGR signal in the GRACE data: impact on mass balance estimates in Antarctica and Greenland. Geophys J Int 172: 18–30. doi:10.1111/j.1365-246X.2007.03630.x CrossRefGoogle Scholar
  5. Bevis M, Alsdorf D, Kendrick E, Fortes LP, Forsberg B, Smalley R Jr, Becker J (2005) Seasonal fluctuations in the mass of the Amazon River system and Earth’s elastic response. Geophys Res Lett 32: L16308. doi:10.1029/2005GL023491 CrossRefGoogle Scholar
  6. Bouin M-N, Vigny C (2000) New constraints on Antarctic plate motion and deformation from GPS data. J Geophys Res 105: 28279–28293CrossRefGoogle Scholar
  7. Capra A, Mancini F, Negusini M (2007) GPS as a geodetic tool for geodynamics in northern Victoria Land, Antarctica. Antarctic Sci 19: 107–114CrossRefGoogle Scholar
  8. Chao BF, Gross RS (1987) Changes in the Earth’s rotation and low-degree gravitational field induced by earthquakes. Geophys J R Astr Soc 91: 569–596Google Scholar
  9. Chen JL, Wilson CR, Tapley BD, Blankenship D, Young D (2008) Antarctic regional ice loss rates from GRACE. Earth Planet Sci Lett 266: 140–148CrossRefGoogle Scholar
  10. Chen JL, Wilson CR, Blankenship DD, Tapley BD (2006) Antarctic mass rates from GRACE. Geophys Res Lett 33: L11502. doi:10.1029/2006GL026369 CrossRefGoogle Scholar
  11. Conway H, Hall BL, Denton GH, Gades AM, Waddington ED (1999) Past and future grounding-line retreat of the West Antarctic ice sheet. Science 286: 280–283CrossRefGoogle Scholar
  12. Davis JL, Elósegui P, Mitrovica JX, Tamisiea ME (2004) Climate-driven deformation of the solid Earth from GRACE and GPS. Geophys Res Lett 31: L24605. doi:10.1029/2004GL021435 CrossRefGoogle Scholar
  13. de Linage C, Hinderer J, Rogister Y (2007) A search for the ratio between gravity variation and vertical displacement due to a surface load. Geophys J Int 171: 986–994CrossRefGoogle Scholar
  14. Denton GH, Hughes TJ (2002) Reconstruction the Antarctic ice sheet at the last glacial maximum. Quat Sci Rev 21: 193–202CrossRefGoogle Scholar
  15. Dietrich R, Rülke A, Ihde J, Lindner K, Miller H, Niemeier W, Schenke HW, Seeber G (2004) Plate kinematics and deformation status of the Antarctic Peninsula based on GPS. Global Planet Change 42: 313–321CrossRefGoogle Scholar
  16. Donnellan A, Luyendyk BP (2004) GPS evidence for a coherent Antarctic plate and for postglacial rebound in Marie Byrd Land. Global Planet Change 42: 305–311CrossRefGoogle Scholar
  17. Fairbanks RG (1989) The 17,000 glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature 342: 637–641CrossRefGoogle Scholar
  18. Farrell WE (1972) Deformation of the Earth by surface loads. Rev Geophys Space Phys 10: 761–797CrossRefGoogle Scholar
  19. Farrell WE, Clark JA (1976) On postglacial sea level. Geophys J R Astr Soc 46: 647–667Google Scholar
  20. Gomez N, Mitrovica JX, Tamisiea ME, Clark PU (2009) A new projection of sea level change in response to collapse of marine sectors of the Antarctic ice sheet. Geophys J Int. doi:10.1111/j.1365-246X.2009.04419.x
  21. Hall BL, Baroni C, Denton GH (2004) Holocene relative sea-level history of the Southern Victoria Land Coast, Antarctica. Global Planet Change 42: 241–263CrossRefGoogle Scholar
  22. Ivins ER, James TS (2005) Antarctic glacial isostatic adjustment: a new assessment. Antarctic Sci 17: 541–553CrossRefGoogle Scholar
  23. James TS, Ivins ER (1998) Predictions of Antarctic crustal motions driven by present-day ice sheet evolution and by isostatic memory of the last glacial maximum. J Geophys Res 103: 4993–5017CrossRefGoogle Scholar
  24. James TS, Ivins ER (1997) Global geodetic signatures of the Antarctic ice sheet. J Geophys Res 102: 605–633CrossRefGoogle Scholar
  25. Kendall RA, Mitrovica JX, Milne GA (2005) On post-glacial sea level. II. Numerical formulation and comparative results on spherically symmetric models. Geophys J Int 164: 679–706CrossRefGoogle Scholar
  26. Lambeck K, Smither C, Johnston P (1998) Sea-level change, glacial rebound and mantle viscosity for northern Europe. Geophys J Int 134: 102–144CrossRefGoogle Scholar
  27. Lambeck K (1980) The Earth’s variable rotation. Cambridge University Press, New York, p 449CrossRefGoogle Scholar
  28. Licht KJ (2004) The Ross sea’s contribution to eustatic sea-level during meltwater pulse 1A. Sediment Geol 165: 343–353CrossRefGoogle Scholar
  29. Lythe MB, Vaughan DG, the BEDMAP Consortium (2001) BEDMAP—a new ice thickness and subglacial topographic model of Antarctica. J Geophys Res 106:11335–11351Google Scholar
  30. Mäkinen J, Amalvict M, Shibuya K, Fukuda Y (2007) Absolute gravimetry in Antarctica: status and prospects. J Geodyn 43: 339–357. doi:10.1016/j.jog.2006.08.002 CrossRefGoogle Scholar
  31. Milne GA (1998) Refining models of the glacial isostatic adjustment process. Ph.D. thesis, University of TorontoGoogle Scholar
  32. Mitrovica JX, Forte AM (2004) A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Planet Sci Lett 225: 177–189CrossRefGoogle Scholar
  33. Mitrovica JX, Milne GA (2003) On post-glacial sea level. I. General theory. Geophys J Int 154: 253–267CrossRefGoogle Scholar
  34. Mitrovica JX, Peltier WR (1991) On postglacial geoid subsidence over the equatorial oceans. J Geophys Res 96: 20053–20071CrossRefGoogle Scholar
  35. Ohzono M, Tabei T, Doi K, Shibuya K, Sagiya T (2006) Crustal movement of Antarctica and Syowa Station based on GPS measurements. Earth Planets Space 58: 795–804Google Scholar
  36. Okuno J, Nakada M (2001) Effects of water load on geophysical signals due to glacial rebound and implications for mantle viscosity. Earth Planets Space 53: 1121–1135Google Scholar
  37. Peltier WR, Fairbanks RG (2006) Global glacial ice volume and last glacial maximum duration from an extended Barbados sea level record. Quatern Sci Rev 25: 3322–3337CrossRefGoogle Scholar
  38. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32: 111–149CrossRefGoogle Scholar
  39. Price SF, Conway H, Waddington ED (2007) Evidence for late Pleistocene thinning of Siple Dome, West Antarctica. J Geophys Res 112: F03021. doi:10.1029/2006JF000725 CrossRefGoogle Scholar
  40. Ramillien G, Bouhours S, Lombard A, Cazenave A, Flechtner F, Schmidt R (2008) Land water storage contribution to sea level from GRACE geoid data over 2003–2006. Global Planet Change 60: 381–392CrossRefGoogle Scholar
  41. Ramillien G, Lombard A, Cazenave A, Ivins ER, Llubes M, Remy F, Biancale R (2006) Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Global Planet Change 53: 198–208CrossRefGoogle Scholar
  42. Raymond CA, Ivins ER, Heflin MB, James TS (2004) Quasi-continuous global positioning system measurements of glacial isostatic adjustment in the Northern transantarctic mountains. Global Planet Change 42: 295–303CrossRefGoogle Scholar
  43. Rignot E (2008) Changes in West Antarctica ice stream dynamics observed with ALOS PALSAR data. Geophys Res Lett 35: L12505. doi:10.1029/2008GL033365 CrossRefGoogle Scholar
  44. Rülke A, Dietrich R, Fritsche M, Rothacher M, Steigenberger P (2008) Realization of the terrestrial reference system by a reprocessed global GPS network. J Geophys Res 113: B08403. doi:10.1029/2007JB005231 CrossRefGoogle Scholar
  45. Shepherd A, Wingham D (2007) Recent sea-level contributions of the Antarctic and Greenland Ice Sheets. Science 315: 1529–1532CrossRefGoogle Scholar
  46. Stanford JD, Rohling EJ, Hunter SE, Roberts AP, Rasmussen SO, Bard E, McManus J, Fairbanks RG (2006) Timing of meltwater pulse 1a and climate responses to meltwater injections. Paleoceanography 21: PA4103. doi:10.1029/2006PA001340 CrossRefGoogle Scholar
  47. Thomas R, Rignot E, Casassa G, Kanagaratnam P, Acuna C, Akins T, Brecher H, Frederick E, Gogineni P, Krabill W, Manizade S, Ramamoorthy H, Rivera A, Russell R, Sonntag J, Swift R, Yungel J, Zwally J (2004) Accelerated sea-level rise from West Antarctica. Science 306: 255–258CrossRefGoogle Scholar
  48. Tregoning P, Welsh A, McQueen H, Lambeck K (2000) The search for postglacial rebound near the Lambert Glacier, Antarctica. Earth Planets Space 52: 1037–1041Google Scholar
  49. Tushingham AM, Peltier WR (1991) ICE-3G: a new global model of late Pleistocene deglaciation based upon geophysical predictions of post glacial relative sea level change. J Geophys Res 96: 4497–4523CrossRefGoogle Scholar
  50. Velicogna I, Wahr J (2006) Measurements of time-variable gravity show mass loss in Antarctica. Science 311: 1754–1756CrossRefGoogle Scholar
  51. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103: 30205–30229CrossRefGoogle Scholar
  52. Wahr J, Wingham D, Bentley C (2000) A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance. J Geophys Res 105: 16279–16294CrossRefGoogle Scholar
  53. Willis MJ (2008) Crustal motion in the Antarctic interior from a decade of Global Positioning System measurements. Ph.D. thesis, Ohio State UniversityGoogle Scholar
  54. Wu P, Wang H, Schotman H (2005) Postglacial induced surface motions, sea-levels and geoid rates on a spherical, self-gravitating laterally heterogeneous earth. J Geodyn 39: 127–142CrossRefGoogle Scholar
  55. Zanutta A, Vittuari L, Gandolfi S (2008) Geodetic GPS-based analysis of recent crustal motions in Victoria Land (Antarctica). Global Planet Change 62: 115–131CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Karen M. Simon
    • 1
    • 2
  • Thomas S. James
    • 1
    • 2
  • Erik R. Ivins
    • 3
  1. 1.School of Earth and Ocean SciencesUniversity of VictoriaVictoriaCanada
  2. 2.Geological Survey of CanadaSidneyCanada
  3. 3.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations