Journal of Geodesy

, Volume 84, Issue 3, pp 201–219 | Cite as

VLBI terrestrial reference frame contributions to ITRF2008

Original Article

Abstract

In late 2008, the Product Center for the International Terrestrial Reference Frame (ITRF) of the International Earth Rotation and Reference Systems Service (IERS) issued a call for contributions to the next realization of the International Terrestrial Reference System, ITRF2008. The official contribution of the International VLBI Service for Geodesy and Astrometry (IVS) to ITRF2008 consists of session-wise datum-free normal equations of altogether 4,539 daily Very Long Baseline Interferometry (VLBI) sessions from 1979.7 to 2009.0 including data of 115 different VLBI sites. It is the result of a combination of individual series of session-wise datum-free normal equations provided by seven analysis centers (ACs) of the IVS. All series are completely reprocessed following homogeneous analysis options according to the IERS Conventions 2003 and IVS Analysis Conventions. Altogether, nine IVS ACs analyzed the full history of VLBI observations with four different software packages. Unfortunately, the contributions of two ACs, Institute of Applied Astronomy (IAA) and Geoscience Australia (AUS), had to be excluded from the combination process. This was mostly done because the IAA series exhibits a clear scale offset while the solution computed from normal equations contained in the AUS SINEX files yielded unreliable results. Based on the experience gathered since the combination efforts for ITRF2005, some discrepancies between the individual series were discovered and overcome. Thus, the consistency of the individual VLBI solutions has improved considerably. The agreement in terms of WRMS of the Terrestrial Reference Frame (TRF) horizontal components is 1 mm, of the height component 2 mm. Comparisons between ITRF2005 and the combined TRF solution for ITRF2008 yielded systematic height differences of up to 5 mm with a zonal signature. These differences can be related to a pole tide correction referenced to a zero mean pole used by four of five IVS ACs in the ITRF2005 contribution instead of a linear mean pole path as recommended in the IERS Conventions. Furthermore, these systematics are the reason for an offset in the scale of 0.4 ppb between the IVS’ contribution to ITRF2008 and ITRF2005. The Earth orientation parameters of seven series used as input for the IVS combined series are consistent to a huge amount with about 50 μas WRMS in polar motion and 3 μs in dUT1.

Keywords

Combination Terrestrial reference frame VLBI Station coordinates Earth orientation parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the international terrestrial reference frame for earth science applications. J Geophys Res 107. doi:10.1029/2001JB000561
  2. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res 112: B9401. doi:10.1029/2007JB004949 CrossRefGoogle Scholar
  3. Angermann D, Drewes H, Krügel M, Meisel B, Gerstl M, Kelm R, Müller H, Seemüller W, Tesmer V (2004) ITRS combination center at DGFI: a terrestrial reference frame realization 2003. Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften (München), Reihe B: Angewandte Geodäsie (ISSN 0065-5317), Heft Nr 313, p 1–141 (2004), ISBN 3-7696-8593-8Google Scholar
  4. Angermann D, Drewes H, Gerstl M, Krügel M, Meisel B (2009) DGFI combination methodology for ITRF2005 computation. In: Drewes H (ed) Geodetic reference frames. Springer, IAG Symposia, vol 134, pp 11–16. doi:10.1007/978-3-642-00860-3_2
  5. Artz T, Böckmann S, Nothnagel A, Tesmer V (2007) ERP time series with daily and sub-daily resolution determined from CONT05. In: Boehm J, Pany A, Schuh H (eds) Proceedings of the 18th European VLBI for geodesy and astrometry working meeting, 12–13 April 2007, Geowissenschaftliche Mitteilungen, Heft Nr. 79, Schriftenreihe des Studienrichtung Vermessung und Geoinformation, Technische Universität Wien, ISSN 1811-8380, pp 69–74. Available electronically at http://mars.hg.tuwien.ac.at/~evga/proceedings/S31_Artz.pdf
  6. Beutler G, Kouba J, Springer T (1995) Combining the orbits of the IGS Analysis Centers. B Geod 69: 200–222. doi:10.1007/BF00806733 CrossRefGoogle Scholar
  7. Blewitt G, Bock Y, Kouba J (1994) Constraining the IGS polyhedrom by distributed processing. In: IGS analysis workshop proceedings: densification of ITRF through regional GPS networks, IGS Central Bureau, Jet Propulsion Laboratory, Pasadena, pp 21–37. Available electronically at http://igscb.jpl.nasa.gov/overview/pubs.html
  8. Böckmann S, Artz T, Nothnagel A, Tesmer V (2007) Comparison and combination of consistent VLBI solution. In: Boehm J, Pany A, Schuh H (eds) Proceedings of the 18th European VLBI for geodesy and astrometry working meeting, 12–13 April 2007, Geowissenschaftliche Mitteilungen, Heft Nr. 79, Schriftenreihe des Studienrichtung Vermessung und Geoinformation, Technische Universität Wien, ISSN 1811-8380, pp 82–87. Available electronically at http://mars.hg.tuwien.ac.at/~evga/proceedings/S34_Boeckmann.pdf
  9. Böckmann S, Nothnagel A, Artz T, Tesmer V (2009). International VLBI service for geodesy and astrometry: EOP combination methodology and quality of the combined products. J Geophys Res (in press). doi:10.1029/2009JB006465
  10. Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European centre for medium-range weather forecasts operational analysis data. J Geophys Res 111: B02406. doi:10.1029/2005JB003629 CrossRefGoogle Scholar
  11. Boehm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81: 679–683. doi:10.1007/s00190-007-0135-3 CrossRefGoogle Scholar
  12. Boehm J, Heinkelmann R, Mendes Cerveira P, Pany A, Schuh H (2009) Atmospheric loading corrections at the observation level in VLBI analysis. J Geod. doi:10.1007/s00190-009-0329-y
  13. Collilieux X, Altamimi Z, Ray J (2005) Impact of thermal expansion of VLBI radio telescopes on the scale of the international terrestrial reference frame. AGU Fall Meeting AbstractsGoogle Scholar
  14. Collilieux X, Altamimi Z, Coulot D, Ray J, Sillard P (2007) Comparison of very long baseline interferometry GPS and satellite laser ranging height residuals from ITRF2005 using spectral and correlation methods. J Geophys Res 112: B12,403. doi:10.1029/2007JB004933 CrossRefGoogle Scholar
  15. Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry-effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20: 1593–1607CrossRefGoogle Scholar
  16. Dow JM, Neilan RE, Rizos C (2008) The international GNSS service in a changing landscape of global navigation satellite systems. J Geodesy 83: 191–198. doi:10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  17. Fey AL, Ma C, Arias EF, Charlot P, Feissel-Vernier M, Gontier AM, Jacobs CS, Li J, MacMillan DS (2004) The second extension of the international celestial reference frame: ICRF-EXT.1. Astron J 127:3587–3608. doi:10.1086/420998. Available electronically at http://www.iop.org/EJ/article/1538-3881/127/6/3587/204010.html
  18. Gambis D (2006) DORIS and the determination of the Earth’s polar motion. J Geod 80: 649–656. doi:10.1007/s00190-006-0043-y CrossRefGoogle Scholar
  19. Kouba J, Mireault Y (1996) Analysis coordinator report. In: IGS Annual Report, JPL Pasadena CA, pp 55–100. Available electronically at http://igscb.jpl.nasa.gov/overview/pubs.html
  20. Kurdubov S (2007) QUASAR software in IAA EOP service: global solution and daily SINEX. In: Boehm J, Pany A, Schuh H (eds) Proceedings of the 18th European VLBI for geodesy and astrometry working meeting, 12–13 April 2007, Geowissenschaftliche Mitteilungen, Heft Nr. 79, Schriftenreihe des Studienrichtung Vermessung und Geoinformation, Technische Universität Wien, ISSN 1811-8380, 79, pp 79–81. Available electronically at http://mars.hg.tuwien.ac.at/~evga/proceedings/S33_Kurdubov.pdf
  21. Letellier T (2004) Etude des ondes de marée sur les plateux continentaux. PhD thesis, Université de Toulouse IIIGoogle Scholar
  22. Ma C, Arias EF, Eubanks TM, Fey AL, Gontier AM, Jacobs CS, Sovers OJ, Archinal BA, Charlot P (1998) The international celestial reference frame as realized by very long baseline interferometry. Astron J 116: 516–546. doi:10.1086/300408 CrossRefGoogle Scholar
  23. MacMillan DS (1995) Atmospheric gradients from very long baseline interferometry observations. Geophys Res Lett 22(9): 1041–1044CrossRefGoogle Scholar
  24. MacMillan DS, Ma C (1997) Atmospheric gradients and the VLBI terrestrial and celestial reference frames. Geophys Res Lett 24: 453–456. doi:10.1029/97GL00143 CrossRefGoogle Scholar
  25. Mathews P, Herring T, Buffett B (2002) Modeling of nutation and precession: new nutation series for nonrigid earth and insights into the earth’s interior. J Geophys Res 107: 2068CrossRefGoogle Scholar
  26. McCarthy D, Petit G (2004) IERS Conventions (2003) Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main. Available electronically at http://www.iers.org/documents/publications/tn/tn32/tn32.pdf
  27. Munekane H, Tobita M, Takashima K (2004) Groundwater-induced vertical movements observed in Tsukuba Japan. Geophys Res Lett 31: L12,608. doi:10.1029/2004GL020158 Google Scholar
  28. Niell A (2006) Interaction of atmosphere modeling and VLBI analysis strategy. In: Behrend D, Baver KD (eds) International VLBI service for geodesy and astrometry 2006 general meeting proceedings, NASA/CP-2006-214140, pp 252–256. Available electronically at http://ivscc.gsfc.nasa.gov/publicastions/gm2006/niell
  29. Nothnagel A (2009) Conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric VLBI. J Geod 83(8): 787–792. doi:10.1007/s00190-008-0284-z CrossRefGoogle Scholar
  30. Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2): 135–143. doi:10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  31. Pearlman MR, Noll C, Dunn P, Horvath J, Husson V, Stevens P, Torrence M, Vo H, Wetzel S (2005) The international laser ranging service and its support for IGGOS. J Geodyn 40: 470–478. doi:10.1016/j.jog.2005.06.009 CrossRefGoogle Scholar
  32. Petrov L (1998) Memo about reweighting. http://lacerta.gsfc.nasa.gov/mk5/help/upwei_02_hlp.ps.gz
  33. Petrov L (2008) Mark-5 VLBI analysis software Calc/Solve. http://gemini.gsfc.nasa.gov/solve/
  34. Schlüter W, Behrend D (2007) The international VLBI service for geodesy and astrometry (IVS): current capabilities and future prospects. J Geod 81: 379–387. doi:10.1007/s00190-006-0131-z CrossRefGoogle Scholar
  35. Tavernier G, Fagard H, Feissel-Vernier M, Bail KL, Lemoine F, Noll C, Noomen R, Ries JC, Soudarin L, Valette JJ, Willis P (2006) The international DORIS service: genesis and early achievements. J Geod 80: 403–417. doi:10.1007/s00190-006-0082-4 CrossRefGoogle Scholar
  36. Tesmer V (2003) Refinement of the stochastic VLBI model: first results. In: Schwegmann W, Thorandt V (eds) Proceedings of the 16th working meeting on European VLBI for geodesy and astrometry, Bundesamt für Kartographie und Geodäsie, Leipzig/Frankfurt am Main, pp 207–218Google Scholar
  37. Tesmer V, Boehm J, Heinkelmann R, Schuh H (2006) Impact of analysis options on the TRF, CRF and position time series estimated from VLBI. In: Behrend D, Baver KD (eds) International VLBI service for geodesy and astrometry 2006 general meeting proceedings, NASA/CP-2006-214140, pp 243–251. Available electronically at http://ivscc.gsfc.nasa.gov/publications/gm2006/tesmer
  38. Tesmer V, Boehm J, Heinkelmann R, Schuh H (2007) Effect of different tropospheric mapping functions on the TRF, CRF and position time-series estimated from VLBI. J Geod 81: 409–421. doi:10.1007/s00190-006-0126-9 CrossRefGoogle Scholar
  39. Tesmer V, Steigenberger P, Rothacher M, Boehm J, Meisel B (2009) Annual deformation signals from homogeneously reprocessed VLBI and GPS height time series. J Geod 83(10): 973–988 10.1007/s00190-009-0316-3 CrossRefGoogle Scholar
  40. Titov O, Tesmer V, Boehm J (2004) OCCAM v.6.0 software for VLBI data analysis. In: Vandenberg NR, Baver KD (eds) IVS 2004 general meeting proceedings, pp 267–271. http://ivscc.gsfc.nasa.gov. Available electronically at http://ivscc.gsfc.nasa.gov/publications/gm2004/titov1
  41. Vennebusch M, Böckmann S, Nothnagel A (2007) The contribution of very long baseline interferometry to ITRF2005. J Geod 81(6): 553–564. doi:10.1007/s00190-006-0117-x CrossRefGoogle Scholar
  42. Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans Am Geophys U 79(47): 579CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute of Geodesy and GeoinformationBonnGermany

Personalised recommendations