Journal of Geodesy

, 83:1107 | Cite as

Atmospheric loading corrections at the observation level in VLBI analysis

  • Johannes Boehm
  • Robert Heinkelmann
  • Paulo Jorge Mendes Cerveira
  • Andrea Pany
  • Harald Schuh
Original Article

Abstract

This paper investigates whether in very long baseline interferometry (VLBI) analysis atmospheric loading corrections should be applied a priori at the observation level or whether it is sufficient to correct for atmospheric loading effects a posteriori by adding constant values per session to the estimated station coordinates. Simulated observations at single stations corresponding to the precise point positioning approach of global navigation satellite systems show that the atmospheric loading effect can be fully recovered by a posteriori corrections, i.e., the height differences between both approaches stay well below 1 mm. However, real global VLBI network solutions with sessions from 1984 to 2008 reveal that the effect of neglected atmospheric loading corrections at the stations is distributed to the other stations in the network, thus resulting in station height differences between solutions with observation level and with a posteriori corrections which can be as large as 10 mm and a ‘damping’ effect of the corrections. As soon as the terrestrial reference frame and the corresponding coordinate time series are determined, it would be conceptually wrong to apply atmospheric loading corrections at the VLBI stations. We recommend the rigorous application of atmospheric loading corrections at the observation level to all stations of a VLBI network because the seven parameters for translation, rotation, and in particular the network-scale of VLBI networks are significantly affected.

Keywords

VLBI Atmospheric loading Terrestrial reference frame 

References

  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112: B09401 doi:10.1029/2007JB004949 CrossRefGoogle Scholar
  2. Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European centre for medium-range weather forecasts operational analysis data. J Geophys Res 111: B02406 doi:10.1029/2005JB003629 CrossRefGoogle Scholar
  3. Heinkelmann R, Boehm J, Schuh H, Bolotin S, Engelhardt G, MacMillan DS, Negusini M, Skurikhina E, Tesmer V, Titov O (2007) Combination of long time-series of troposphere zenith delays observed by VLBI. J Geod 8(6–8): 483–501CrossRefGoogle Scholar
  4. MacMillan D, Gipson J (1994) Atmospheric pressure loading parameters from very long baseline interferometry observations. J Geophys Res 99(B9): 18081–18087CrossRefGoogle Scholar
  5. McCarthy D, Petit G (2004) IERS conventions (2003). IERS Technical Note No. 32, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  6. Nilsson T, Haas R, Elgered G (2007) Simulation of atmospheric path delays using turbulence models. In: Boehm J, Pany A, Schuh H (eds) Proceedings of the 18th European VLBI for geodesy and astrometry working meeting, 12–13 April 2007, Geowissenschaftliche Mitteilungen, Heft Nr. 79, Schriftenreihe der Studienrichtung Vermessung und Geoinformation, Technische Universität Wien, ISSN 1811-8380, pp 175–180Google Scholar
  7. Nothnagel A, Vennebusch M, Campbell J (2002) On correlations between parameters in geodetic VLBI data analysis. In: Vandenberg NR, Baver K (eds) IVS 2002 general meeting proceedings, pp 260–264Google Scholar
  8. Pany A, Wresnik J, Boehm J (2008) Vienna VLBI2010 PPP simulator. IVS Memorandum 2008-012v01. ftp://ivscc.gsfc.nasa.gov/pub/memos/ivs-2008-012v01.pdf
  9. Petrachenko B, Niell A, Behrend D, Corey B, Boehm J, Charlot P, Collioud A, Gipson J, Haas R, Hobiger T, Koyama Y, MacMillan D, Malkin Z, Nilsson T, Pany A, Tuccari G, Whitney A, Wresnik J (2009) Design aspects of the VLBI2010 system—progress report of the VLBI2010 committee. In: Behrend D, Baver K (eds) IVS annual report 2008Google Scholar
  10. Petrov L, Boy JP (2004) Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J Geophys Res 109: B03405CrossRefGoogle Scholar
  11. Rabbel W, Schuh H (1986) The influence of atmospheric loading on VLBI-experiments. J Geophys 59: 164–170Google Scholar
  12. Rabbel W, Zschau J (1985) Static deformations and gravity changes at the earth’s surface due to atmospheric loading. J Geophys 56: 81–99Google Scholar
  13. Ray J, Altamimi Z, van Dam T, Herring T (2007) Principles for conventional contributions to modeled station displacements. IERS conventions workshop-position paper for sessions 2 & 5, Paris. http://www.bipm.org/utils/en/events/iers/Conv_PP1.txt
  14. Rothacher M (2002) Estimation of station heights with GPS. In: Drewes H, Dodson A, Fortes LPS, Sánchez L, Sandoval P (eds) IAG symposium series, vol 124. Springer, Berlin, pp 81–90Google Scholar
  15. Schlüter W, Behrend B (2007) The international VLBI service for geodesy and astrometry (IVS): current capabilities and future prospects. J Geod 81(6–8): 379–387CrossRefGoogle Scholar
  16. Steigenberger P, Boehm J, Tesmer V (2009) Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. J Geod. doi:10.1007/s00190-009-0311-8
  17. Tesmer J (2008) Impact of analysis options on the TRF, CRF and position time series estimated from VLBI, Master Thesis in the Master Course in Earth oriented space science and technology, Technische Universität MünchenGoogle Scholar
  18. Titov O, Tesmer V, Boehm J (2004) Occam v. 6.0 software for VLBI data analysis. In: Vandenberg NR, Baver KD (eds) International VLBI service for geodesy and astrometry 2004 general meeting proceedings, NASA/CP-2004-212255, pp 267–271Google Scholar
  19. Tregoning P, Van Dam T (2005) Atmospheric pressure loading corrections applied to GPS data at the observation level. Geophys Res Lett 32: L22310CrossRefGoogle Scholar
  20. Van Dam T, Wahr J (1987) Displacements of the Earth’s surface due to atmospheric loading: effects on gravity and baseline measurements. J Geophys Res 92(B2): 1281–1286CrossRefGoogle Scholar
  21. Van Dam T, Blewitt G, Heflin M (1994) Atmospheric pressure loading effects on global positioning system coordinate determinations. J Geophys Res 99(B12): 23939–23950CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Johannes Boehm
    • 1
  • Robert Heinkelmann
    • 1
    • 2
  • Paulo Jorge Mendes Cerveira
    • 1
    • 3
  • Andrea Pany
    • 1
  • Harald Schuh
    • 1
  1. 1.Vienna University of TechnologyViennaAustria
  2. 2.DGFIMunichGermany
  3. 3.BEWAG Geoservice GmbHEisenstadtAustria

Personalised recommendations