Journal of Geodesy

, 83:1083 | Cite as

High-rate GPS clock corrections from CODE: support of 1 Hz applications

Original Article

Abstract

GPS zero-difference applications with a sampling rate up to 1 Hz require corresponding high-rate GPS clock corrections. The determination of the clock corrections in a full network solution is a time-consuming task. The Center for Orbit Determination in Europe (CODE) has developed an efficient algorithm based on epoch-differenced phase observations, which allows to generate high-rate clock corrections within reasonably short time (< 2 h) and with sufficient accuracy (on the same level as the CODE rapid or final clock corrections, respectively). The clock determination procedure at CODE and the new algorithm is described in detail. It is shown that the simplifications to speed up the processing are not causing a significant loss of accuracy for the clock corrections. The high-rate clock corrections have in essence the same quality as clock corrections determined in a full network solution. In order to support 1 Hz applications 1-s clock corrections would be needed. The computation time, even for the efficient algorithm, is not negligible, however. Therefore, we studied whether a reduced sampling is sufficient for the GPS satellite clock corrections to reach the same or only slightly inferior level of accuracy as for the full 1-s clock correction set. We show that high-rate satellite clock corrections with a spacing of 5 s may be linearly interpolated resulting in less than 2% degradation of accuracy.

Keywords

High-rate GPS clock corrections IGS 1 Hz 

References

  1. Allan D (1987) Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators. In: IEEE transactions of ultrasonics, ferroelectrics, and frequency control, vol UFFC–34(6)Google Scholar
  2. Beutler G, Brockmann E, Hugentobler U, Mervart L, Rothacher M, Weber R (1996) Combining consecutive short arcs into long arcs for precise and efficient GPS orbit determination. J Geod 70: 287–299Google Scholar
  3. Bock H (2004) Efficient methods for determining precise orbits of low earth orbiters using the Global Positioning System. Geodätisch- geophysikalische Arbeiten in der Schweiz, Band 65, Schweizerische Geodätische Kommission, Institut für Geodäsie und Photogrammetrie Eidg. Technische Hochschule Zürich, ZürichGoogle Scholar
  4. Bock H, Beutler G, Schaer S, Springer TA, Rothacher M (2000) Processing aspects related to permanent GPS arrays. Earth Planets Space 52: 657–662Google Scholar
  5. Bock H, Hugentobler U, Springer T, Beutler G (2002) Efficient precise orbit determination of LEO satellites using GPS. Adv Space Res 30(2): 295–300CrossRefGoogle Scholar
  6. Bock H, Jäggi A, Švehla D, Beutler G, Hugentobler U, Visser P (2007) Precise orbit determination for the GOCE satellite using GPS. Adv Space Res 39(10): 1638–1647. doi: 10.1016/j.asr.2007.02.053 CrossRefGoogle Scholar
  7. Dach R, Schildknecht T, Hugentobler U, Bernier LG, Dudle G (2006) Continuous geodetic time transfer analysis method. IEEE Trans Ultrason Ferroelectr Freq Control 53(7): 1250–1259CrossRefGoogle Scholar
  8. Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) The Bernese GPS software version 5.0. Astronomical Institute, University of BernGoogle Scholar
  9. Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status Report. J Geod 83(3–4): 353–365. doi: 10.1007/s00190-008-0281-2 CrossRefGoogle Scholar
  10. Dow J, Neilan R, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4): 191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  11. Drinkwater M, Haagmans R, Muzi D, Popescu A, Floberghagen R, Kern M, Fehringer M (2006) The GOCE gravity mission: ESA’s first core explorer. In: Proceedings 3rd GOCE User Workshop, 6–8 November 2006, Frascati, Italy, ESA SP-627, pp 1–7Google Scholar
  12. Gendt G (2006) Combined IGS clocks with 30 second sampling rate. IGS Mail No. 5525, IGS Central Bureau Information SystemGoogle Scholar
  13. Gurtner W (1994) RINEX: The receiver-independent exchange format. GPS World 5(7):48–52. Format specifications available at ftp://igscb.jpl.nasa.gov/igscb/data/format/rinex2.txt
  14. Hugentobler U (2004) CODE high rate clocks. IGS Mail No. 4913, IGS Central Bureau Information SystemGoogle Scholar
  15. Hwang C, Tseng T, Lin T, Švehla D, Schreiner B (2008) Precise orbit determination for the FORMOSAT-3/COSMIC satellite mission using GPS. J Geod doi: 10.1007/s00190-008-0256-3
  16. Jäggi A (2007) Pseudo-stochastic orbit modeling of low Earth satellites using the Global Positioning System. Geodätisch-geophysikalische Arbeiten in der Schweiz, Band 73, Schweizerische Geodätische Kommission, Institut für Geodäsie und Photogrammetrie, Eidg. Technische Hochschule Zürich, ZürichGoogle Scholar
  17. Jäggi A, Hugentobler U, Beutler G (2006) Pseudo-stochastic orbit modeling techniques for low-Earth orbits. J Geod 80(1): 47–60CrossRefGoogle Scholar
  18. Jäggi A, Hugentobler U, Bock H, Beutler G (2007) Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data. Adv Space Res 39(10): 1612–1619. doi: 10.1016/j.asr.2007.03.012 CrossRefGoogle Scholar
  19. Jäggi A, Bock H, Pail R, Goiginger H (2008) Highly-reduced dynamic orbits and their use for global gravity field recovery: a simulation study for GOCE. Stud Geophys Geod 52(3): 341–359CrossRefGoogle Scholar
  20. Koop R, Gruber T, Rummel R (2006) The status of the GOCE high-level processing facility. In: Proceedings 3rd GOCE User Workshop, 6-8 November 2006. Frascati, Italy, ESA SP-627, pp 199–205Google Scholar
  21. Kroes R (2006) Precise relative positioning of formation flying spacecraft using GPS. Optima Grafische Communicatie, Rotterdam. ISBN 90-8559-150-3Google Scholar
  22. McCarthy D, Petit G (2004) IERS conventions (2003). IERS Technical Note 32, Bundesamt für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  23. Montenbruck O, Gill E, Kroes R (2005) Rapid orbit determination of LEO satellites using IGS clock and ephemeris products. GPS Solutions 9: 226–235. doi: 10.1007/s10291-005-0131-0 CrossRefGoogle Scholar
  24. Noll C, Bock Y, Habrich H, Moore A (2009) Development of data infrastructure to support scientific analysis for the International GNSS Service. J Geod 83(3–4): 309–325. doi: 10.1007/s00190-008-0245-6 CrossRefGoogle Scholar
  25. Pail R, Metzler B, Lackner B, Preimesberger T, Höck E, Schuh WD, Alkathib H, Boxhammer C, Siemes C, Wermuth M (2006) GOCE gravity field analysis in the framework of HPF: operational software system and simulation results. In: Proceedings 3rd GOCE User Workshop, 6-8 November 2006. Frascati, Italy, ESA SP-627, pp 249–256Google Scholar
  26. Press WH, Teukolsky S, Vetterling WT, Flannery BP (1996) Numerical Recipes in Fortran 77. The Art of Scientific Computing, 2nd edn. Cambridge University Press, LondonGoogle Scholar
  27. Reigber C, Lühr H, Schwintzer P (2002) CHAMP mission status. Adv Space Res 30(2): 129–134CrossRefGoogle Scholar
  28. Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the Global Positioning System, Geodätisch-geophysikalische Arbeiten in der Schweiz, vol 59. Schweizerische Geodätische Kommission, Institut für Geodäsie und Photogrammetrie, Eidg Technische Hochschule Zürich, Zürich, SwitzerlandGoogle Scholar
  29. Schaer S, Dach R (2008) Model changes made at CODE. IGS Mail No. 5771. IGS Central Bureau Information SystemGoogle Scholar
  30. Springer T (2000) Modeling and validating orbits and clocks using the Global Positioning System. Geodätisch-geophysikalische Arbeiten in der Schweiz, Band 60, Schweizerische Geodätische Kommission, Institut für Geodäsie und Photogrammetrie, Eidg. Technische Hochschule Zürich, ZürichGoogle Scholar
  31. Tapley B, Bettadpur S, Ries J, Watkins M (2004) GRACE measurements of mass variability in the Earth system. Science 305(5683): 503–505CrossRefGoogle Scholar
  32. Van Helleputte T, Visser P (2008) GPS based orbit determination using accelerometer data. Aerosp Sci Technol 12: 478–484. doi: 10.1016/j.ast.2007.11.002 CrossRefGoogle Scholar
  33. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3): 5005–5017CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Astronomical InstituteUniversity of BernBernSwitzerland

Personalised recommendations