Journal of Geodesy

, 83:1071

A symbolic analysis of Vermeille and Borkowski polynomials for transforming 3D Cartesian to geodetic coordinates

Original Article

Abstract

Closed form solutions for transforming 3D Cartesian to geodetic coordinates reduce the problem to finding the real solutions of the fourth degree latitude equation or variations of it. By using symbolic tools (Sturm–Habicht coefficients and subresultants mainly) we study the methods (and polynomials) proposed by Vermeille and Borkowski to solve this problem. For Vermeille approach, the region where it cannot be applied is completely characterized. For those points it is shown how to transform 3D Cartesian to geodetic coordinates and a new method for solving Vermeille equation for those cases not yet covered is introduced. Concerning Borkowski’s approach, the symbolic analysis produces a complete characterization of the singular cases (i.e. where multiple roots appear).

Keywords

Coordinate transformations 3D Cartesian and geodetic coordinates Symbolic computation 

References

  1. Basu S, Pollack R, Roy MF (2003) Algorithms in real algebraic geometry. Algorithms and computations in mathematics, vol 10. Springer, Berlin (second edition, 2006)Google Scholar
  2. Borkowski KM (1989) Accurate algorithms to transform geocentric to geodetic coordinates. Bull Geod 63: 50–56CrossRefGoogle Scholar
  3. Bowring BR (1976) Transformation from spatial to geographical coordinates. Surv Rev 181: 323–327Google Scholar
  4. Featherstone WE, Claessens SJ (2008) Closed-form transformation between geodetic and ellipsoidal coordinates. Studia Geophys et Geod 52: 1–18CrossRefGoogle Scholar
  5. Feltens J (2008) Vector method to compute the Cartesian (X,Y,Z) to geodetic (ϕ, λ, h) transformation on a triaxial ellipsoid. J Geod 83: 129–137CrossRefGoogle Scholar
  6. Fok HS, Iz HB (2003) A comparative analysis of the performance of iterative and non-iterative solutions to the cartesian to geodetic coordinate transformation. J Geosp Eng 5: 61–74Google Scholar
  7. Fukushima T (1999) Fast transform from geocentric to geodetic coordinates. J Geod 73: 603–610CrossRefGoogle Scholar
  8. Gonzalez-Vega L, Lombardi H, Recio T, Roy MF (1994) Determinants and real roots of univariate polynomials. Quantifier elimination and cylindrical algebraic decomposition. Texts and monographs in symbolic computation, pp 300–316. Springer, BerlinGoogle Scholar
  9. Heikkinen M (1982) Geschlossene Formeln zur Berechnung raumlicher geodätischer Koordinaten aus rechtwinkligen Koordinaten. Z Vermess 107: 207–211Google Scholar
  10. Merriman M (1892) The deduction of final formulas for the algebraic solution of the quartic equation. Am J Math 14: 237–245CrossRefGoogle Scholar
  11. Moritz H (1980) Geodetic reference system. Bull Geod 54: 395–405CrossRefGoogle Scholar
  12. Paláncz B, Zaletnyik P, Awange JL, Grafarend EW (2008) Dixon resultants solution of systems of geodetic polynomial equations. J Geod 82: 505–511CrossRefGoogle Scholar
  13. Paul MK (1973) A note on computation of geodetic coordinates from geocentric (Cartesian) coordinates. Bull Geod 108: 135–139CrossRefGoogle Scholar
  14. Pollard J (2002) Iterative vector methods for computing geodetic latitude and height from rectangular coordinates. J Geod 76: 36–40CrossRefGoogle Scholar
  15. Sommerville DMY (1937) Analytical conics. G. Bell and Sons, Ltd., LondonGoogle Scholar
  16. Turner JD (2008) A non-iterative and non-singular perturbation solution for transforming Cartesian to geodetic coordinates. J Geod 83: 139–145CrossRefGoogle Scholar
  17. Vermeille H (2002) Direct transformation from geocentric to geodetic coordinates. J Geod 76: 451–454CrossRefGoogle Scholar
  18. Vermeille H (2004) Computing geodetic coordinates from geocentric coordinates. J Geod 78: 94–95CrossRefGoogle Scholar
  19. Zhang CD, Hsu HT, Wu XP, Li SS, Wang QB, Chai HZ, Du L (2005) An alternative algebraic algorithm to transform Cartesian to geodetic coordinates. J Geod 79: 413–420CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Departamento de Matematicas, Estadistica y ComputacionUniversidad de CantabriaSantanderSpain

Personalised recommendations