Advertisement

Journal of Geodesy

, Volume 83, Issue 11, pp 1051–1060 | Cite as

A comparison of coincident GRACE and ICESat data over Antarctica

  • Brian GunterEmail author
  • T. Urban
  • R. Riva
  • M. Helsen
  • R. Harpold
  • S. Poole
  • P. Nagel
  • B. Schutz
  • B. Tapley
Open Access
Original Article

Abstract

In this study, we present a comparison of coincident GRACE and ICESat data over Antarctica. The analysis focused on the secular changes over a 4-year period spanning from 2003 to 2007, using the recently reprocessed and publicly available data sets for both missions. The results show that the two independent data sets possess strong spatial correlations, but that there are several factors that can significantly impact the total derived ice mass variability from both missions. For GRACE, the primary source of uncertainty comes from the modelling of glacial isostatic adjustment, along with the estimates of C 2,0 and the degree one terms. For ICESat, it is shown that assumptions about firn density, rate biases, and the sampling interval of the various laser campaigns can have large effects on the results. Despite these uncertainties, the similarities that do exist indicate a strong potential for the future refinement of both GIA and mass balance estimates of Antarctica.

Keywords

GRACE ICESat Antarctica Ice mass change Glacial isostatic adjustment (GIA) 

Notes

Acknowledgments

The authors would like to thank J. Wahr, S. Nerem, and the anonymous referees for their many valuable comments and discussions. Parts of this study were funded by NASA grants NAS5-99005 and NAS5-97213.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. Barletta V, Sabadini R, Bordoni A (2008) Isolating the PGR signal in the GRACE data: impact on mass balance estimates in Antarctica and Greenland. Geophys J Int 172: 18–30. doi: 10.1111/j.1365-246X.2007.03630.x CrossRefGoogle Scholar
  2. Bettadpur S (2007) CSR Level-2 Processing Standards Document for Product Release 04 GRACE 327-742, 3rd edn. Center for Space Research. http://podaac.jpl.nasa.gov/grace/documentation.html
  3. Blewitt G, Lavallee D (2006) Effect of annual signals on geodetic velocity. J Geophys Res 107(B7). doi: 10.1029/2001JB000570
  4. Chen J, Rodell M, Wilson C, Famiglietti J (2005) Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates. Geophys Res Lett 32(L14405). doi: 10.1029/2005GL022964
  5. Chen JL, Wilson CR, Blankenship DD, Tapley BD (2006) Antarctic mass rates from GRACE. Geophys Res Lett 33(L11502). doi: 10.1029/2006GL026369
  6. Cheng M, Ries J (2008) Monthly estimates of C20 from 5 SLR satellites. Tech. rep., Center for Space Research. http://podaac.jpl.nasa.gov/grace/documentation.html
  7. Cheng M, Tapley BD (2004) Variations in the earth’s oblateness during the past 28 years. J Geophys Res 109(B9)Google Scholar
  8. Davis J, Elsegui P, Mitrovica J, Tamisiea M (2004) Climate-driven deformation of the solid earth from GRACE and GPS. Geophys Res Lett 31(L24605). doi: 10.1029/2004GL021435
  9. Farrell W, Clark JT (1976) On postglacial sea level. Geophys J R Astron Soc 46: 647–667Google Scholar
  10. Gunter B, Riva R, Urban T, Schutz B, Harpold R, Helsen M, Nagel P (2008) Evaluation of GRACE and ICESat mass change estimates over Antarctica. In: Proceedings of the IAG international symposium on gravity, geoid and earth observation (GGEO), Chania, GreeceGoogle Scholar
  11. Horwath M, Dietrich R (2009) Signal and error in mass change inferences from GRACE: the case of Antarctica. Geophys J Int. doi: 10.1111/j.1365-246X.2009.04139.x
  12. Ivins ER, James TS (2005) Antarctic glacial isostatic adjustment: a new assessment. Antarctic Sci 17(4): 541–553CrossRefGoogle Scholar
  13. Kaspers KA, van de Wal R, van den Broeke MR, Schwander J, van Lipzig NPM, Brenninkmeijer CAM (2004) Model calculations of the age of firn air across the Antarctic continent. Atmos Chem Phys 4: 1365–1380CrossRefGoogle Scholar
  14. Klees R, Revtova E, Gunter B, Ditmar P, Oudman E, Winsemius H, Savenije H (2008) Filter design for GRACE gravity models. Geophys J Int 175(2): 417–432CrossRefGoogle Scholar
  15. Leuliette E, Nerem R, Mitchum G (2004) Calibration of TOPEX/Poseidon and Jason altimeter data to construct a continuous record of mean sea level change. Mar Geod 27: 79–94CrossRefGoogle Scholar
  16. Magruder L, Webb C, Urban T, Silverberg E, Schutz B (2007) ICESat altimetry data product verification at White Sands space harbor. IEEE Trans Geosci Rem Sen 45(1): 147–155CrossRefGoogle Scholar
  17. Milne GA, Mitrovica JX (1998) Postglacial sea-level change on a rotating earth. Geophys J Int 133: 1–9CrossRefGoogle Scholar
  18. Mitrovica J, Forte A (2004) A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Planet Sci Lett 225: 177–189CrossRefGoogle Scholar
  19. Peltier W (2004) Global glacial isostasy and the surface of the ice-age earth: The ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32: 111–149CrossRefGoogle Scholar
  20. Ramillien G, Lombard A, Cazenave A, Ivins E, Llubes M, Remy F, Biancale R (2006) Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Glob Planet Change 53: 198–208. doi: 10.1016/j.gloplacha.2006.06.003 CrossRefGoogle Scholar
  21. Rignot E, Bamber J, van den Broeke M, Davis C, Li Y, van de Berg W, van Meijgaard E (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat Geosci 1: 106–110. doi: 10.1038/ngeo102 CrossRefGoogle Scholar
  22. Schutz B, Zwally HJ, Shuman C, Hancock D, DiMarzio R (2005) Overview of the ICESat mission. Geophys Res Lett 32. doi: 10.1029/2005GL024009
  23. Shuman CA, Zwally HJ, Schutz BE, Brenner AC, DiMarzio JP, Suchdeo VP, Fricker HA (2006) ICESat antarctic elevation data: Preliminary precision and accuracy assessment. Geophys Res Lett 33(L07501). doi: 10.1029/2005GL025227
  24. Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. J Geophys Res 33(L08402). doi: 10.1029/2005GL025285
  25. Swenson S, Chambers D, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res. doi: 10.1029/2007JB005338
  26. Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The Gravity Recovery and Climate Experiment: mission overview and early results. Geophys Res Lett 31(L09607). doi: 10.1029/2004GL019920
  27. Thomas R, Rignot E, Casassa G, Kanagaratnam P, Acuna C, Akins T, Brecher H, Frederick E, Gogineni P, Krabill W, Manizade S, Ramamoorthy H, Rivera A, Russell R, Sonntag J, Swift R, Yungel J, Zwally J (2004) Accelerated sea-level rise from West Antarctica. Science 306: 255. doi: 10.1126/science.1099650 CrossRefGoogle Scholar
  28. Urban T, Schutz BE (2005) ICESat sea level comparisons. Geophys Res Lett 32(L23S10). doi: 10.1029/10.1029/2005GL024306
  29. van de Berg WJ, van den Broeke MR, Reijmer CH, van Meijgaard E (2006) Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J Geophys Res 111(D11104). doi: 10.1029/2005JD006495
  30. Vaughan D, Bamber J, Giovinetto M, Russel J, Cooper A (1999) Reassessment of net surface mass balance in Antarctica. J Clim 12(4)Google Scholar
  31. Velicogna I, Wahr J (2006) Measurements of time-variable gravity show mass loss in Antarctica. Science 311(1754). doi: 10.1126/science.1123785
  32. Vermeersen L, Sabadini R (1997) A new class of stratified viscoelastic models by analytical techniques. Geophys J Int 129: 531–570CrossRefGoogle Scholar
  33. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12): 30, 205–30, 230. doi: 10.1029/98JB02844 CrossRefGoogle Scholar
  34. Wahr J, Wingham D, Bentley C (2000) A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance. J Geophys Res 105(B7): 16,279–16,294CrossRefGoogle Scholar
  35. Webb C, Stauch J, Harpold R, Lorhammer K, Schutz B, Born G (2007) ICESat off-nadir laser targeting: theory and practice. Adv Astronaut Sci 123: 155–174Google Scholar
  36. Wu X, Watkins MM, Ivins ER, Kwok R, Wang P, Wahr JM (2002) Toward global inverse solutions for current and past ice mass variations: Contribution of secular satellite gravity and topography change measurements. J Geophys Res 107(B11): 2291. doi: 10.1029/2001JB000543 CrossRefGoogle Scholar
  37. Wu X, Heflin M, Ivins E, Fukumori I (2006) Seasonal and interannual global surface mass variations from multisatellite geodetic data. J Geophys Res 111(B09401). doi: 10.1029/2005JB004100
  38. Zwally HJ, Giovinetto MB, Li J, Cornejo HG, Beckley MA, Brenner AC, Saba JL, Yi D (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J Glaciol 51(175): 509–527CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Brian Gunter
    • 1
    Email author
  • T. Urban
    • 2
  • R. Riva
    • 1
  • M. Helsen
    • 3
  • R. Harpold
    • 2
  • S. Poole
    • 2
  • P. Nagel
    • 2
  • B. Schutz
    • 2
  • B. Tapley
    • 2
  1. 1.Delft Institute of Earth Observation and Space Systems (DEOS)Delft University of TechnologyDelftThe Netherlands
  2. 2.Center for Space ResearchThe University of Texas at AustinAustinUSA
  3. 3.Institute for Marine and Atmospheric Research Utrecht (IMAU)Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations