Journal of Geodesy

, Volume 83, Issue 10, pp 973–988 | Cite as

Annual deformation signals from homogeneously reprocessed VLBI and GPS height time series

  • Volker Tesmer
  • Peter Steigenberger
  • Markus Rothacher
  • Johannes Boehm
  • Barbara Meisel
Original Article

Abstract

The first part of this paper compares homogeneously reprocessed Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) long-term height series from 1994 to 2007. The data analysis used fully adapted state-of-the-art models (like VMF1 and a priori zenith delays from ECMWF) for the GPS and VLBI processing. The series are compared in terms of long-term non-linear behaviour, harmonic and mean annual signals (not necessarily of harmonic nature). The similarity between both techniques is very good (especially the mean annual signals), which is assumed to be due to the adapted models and consistent reprocessing of both series. As two almost independent observing techniques see the same annually recurring signals at almost all co-located sites, we expect a good geophysical interpretability as integral vertical deformation. For the second part of this paper, the height time series of 161 suitable GPS sites (of the same solution as before) are used to determine a harmonic and a mean annual signal for each of them. Comparing the annual signals for this big dataset visually to GRACE-determined load deformations described in other publications, we find good agreement. This puts emphasis to the assumption that our height data have a lot of potential to be interpreted as geophysical signals. Out of these 161, 131 are grouped to 55 clusters, if at least two nearby (some thousand kilometres) sites show similar mean annual signals, which are thus confirmed to be real regional deformation, not local or technical artefacts. These 55 signals are presented on a “world map” of regional average mean annual height signals, as easy-to-handle tool to validate geophysical models. The data of these measured regional mean annual signals can be downloaded from a web-page for numerical analysis.

Keywords

VLBI GPS Reprocessing Height time series Annual signal Vertical deformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112: B09401. doi:10.1029/2007JB004949 CrossRefGoogle Scholar
  2. Angermann D, Drewes H, Gerstl M, Meisel B, Seitz M, Thaller D (2009) GGOS-D global terrestrial reference frame. Geotechnologien book “Satellite geodesy and Earth system science—observation of the Earth from space”. Springer, Berlin (submitted)Google Scholar
  3. Böckmann S, Nothnagel A (2008) The variance component approach in the IVS combination. In: Finkelstein A, Behrend D (eds) IVS 2008 GM proceedings, Russian science series “Nauka”, vol 208, pp 329–334Google Scholar
  4. Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and Very Long Baseline Interferometry from European centre for medium-range weather forecasts operational analysis data. J Geophys Res 111: B02406. doi:10.1029/2005JB003629 CrossRefGoogle Scholar
  5. Collilieux X, Altamimi Z, Coulot D, Ray J, Sillard P (2007) Comparison of Very Long Baseline Interferometry, GPS, and Satellite Laser Ranging height residuals from ITRF2005 using spectral and correlation methods. J Geophys Res 112: B12403. doi:10.1029/2007JB004933 CrossRefGoogle Scholar
  6. Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) Bernese GPS Software Version 5.0. Astronomical Institute, University of BernGoogle Scholar
  7. Davis JL, Elosegui P, Mitrovica JX, Tamisea ME (2004) Climate-driven deformation of the solid Earth from GRACE and GPS. Geophys Res Lett 31: L24605. doi:10.1029/2004GL021435 CrossRefGoogle Scholar
  8. Ding XL, Zheng DW, Dong DN, Ma C, Chen YQ, Wang GL (2005) Seasonal and secular positional variations at eight co-located GPS and VLBI stations. J Geod 79(1–3): 71–81. doi:10.1007/s00190-005-0444-3 CrossRefGoogle Scholar
  9. Dong D, Fang P, Bock Y, Cheng MK, Miyazaki S (2002) Anatomy of apparent seasonal variations from GPS-derived site position time series. J Geophys Res 107(B4): 2075. doi:10.1029/2001JB000573 CrossRefGoogle Scholar
  10. Dow J, Neilan R, Gendt G (2005) The international GPS service: celebrating the 10th anniversary and looking to the next decade. Adv Space Res 36(3): 320–326. doi:10.1016/j.asr.2005.05.125 CrossRefGoogle Scholar
  11. Feissel-Vernier M, de Viron O, Bail KL (2007) Stability of VLBI, SLR, DORIS, and GPS positioning. Earth Planets Space 59(6): 475– 497Google Scholar
  12. Freymueller JT (2009) Seasonal position variations and regional reference frame realization. In: Bosch W, Drewes H (eds) GRF2006 symposium proceedings, International Association of Geodesy symposia, vol 134. Springer, Berlin (in press)Google Scholar
  13. Fritsche M, Dietrich R, Knöfel C, Rothacher M, Rülke A, Vey S, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS-estimates. Geophys Res Lett 32: L23311. doi:10.1029/2005GL024342 CrossRefGoogle Scholar
  14. Heinkelmann R, Boehm J, Schuh H, Tesmer V (2009) The effect of meteorological input data on the VLBI reference frames. In: Bosch W, Drewes H (eds) GRF2006 symposium proceedings, International Association of Geodesy symposia, vol 134. Springer, Berlin (in press)Google Scholar
  15. Horwath M, Rülke A, Fritsche M, Dietrich R (2009) Mass variation signals in GRACE products and in crustal deformations from GPS: a comparison. Geotechnologien book “Satellite geodesy and Earth system science—observation of the Earth from space”. Springer, Berlin (submitted)Google Scholar
  16. Jaldehag RTK, Johansson JM, Rönnäng BO, Elósegui P, Davis JL, Shapiro II, Niell AE (1996) Geodesy using the Swedish permanent GPS network: effects of signal scattering on estimates of relative site positions. J Geophys Res 101(8):1601–1604 doi:10.1029/96JB01183 Google Scholar
  17. Kaniuth K, Huber S (2002) An assessment of radome effects on height estimation in the EUREF network. In: Torres JA, Hornik H (eds) EUREF publication No. 12: report on the symposium of the IAG sub-commission for Europe (EUREF) held in Ponta Delgada, 5–8 June 2002, Mitteilungen des Bundesamtes für Kartographie und Geodäsie Band 29, pp 97–102, Frankfurt am MainGoogle Scholar
  18. Kaniuth K, Stuber K, Vetter S (2005) Sensitivität von GPS-Höhenbestimmungen gegen Akkumulation von Schnee auf der Antenne. AVN 112(8–9): 290–295Google Scholar
  19. Kouba J (2009) Testing of Global Pressure/Temperature (GPT) model and Global Mapping Function (GMF) in GPS analyses. J Geod (accepted). doi:10.1007/s00190-008-0229-6
  20. MacMillan D, Boy J-P (2004) Mass loading effects on crustal displacements measured by VLBI. In: Vandenberg N, Baver K (eds) IVS 2004 GM proceedings, NASA/CP-2004-212255, pp 476– 480Google Scholar
  21. Mangiarotti S, Cazenave A, Soudarin L, Cretaux JF (2001) Annual vertical crustal motions predicted from surface mass redistribution and observed by space geodesy. J Geophys Res 106(B3): 4277–4291. doi:10.1029/2000JB900347 CrossRefGoogle Scholar
  22. Mendes PJ (2006) Tidal and non-tidal contributions to surface loading processes on station coordinates. PhD-thesis, Institute of Geodesy and Geophysics, Vienna University of Technology, Heft Nr. 76, ISSN 1811-8380Google Scholar
  23. Niell AE (1996) Global Mapping functions for the atmosphere delay at radio wavelength. J Geophys Res 101(B2): 3227–3246. doi:10.1029/95JB03048 CrossRefGoogle Scholar
  24. Niell AE (2001) Preliminary evaluation of atmospheric mapping functions based on numerical weather models. Phys Chem Earth 26(6–8): 475–480. doi:10.1016/S1464-1895(01)00087-4 Google Scholar
  25. Nothnagel A (2008) Short note: conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric VLBI. J Geod. doi:10.1007/s00190-008-0284-z
  26. Nothnagel A, Rothacher M, Angermann D, Artz T, Böckmann S, Bosch W, Drewes H, Gerstl M, Kelm R, Krügel M, König D, König R, Meisel B, Müller H, Richter B, Panafidina N, Rudenko S, Schwegmann W, Steigenberger P, Tesmer V, Thaller D (2008) GGOS-D: a German project on the integration of space geodetic techniques. In: Capitaine N (ed) “Journées 2007 systèmes de référence Spatio-Temporels” Proceedings, Observatoire de Paris, ISBN 978-2-901057-59-8, pp 167–168Google Scholar
  27. Nothnagel A, Artz T, Böckmann S, Panafidina N, Rothacher M, Seitz M, Steigenberger P, Tesmer V, Thaller D (2009) GGOS-D consistent and combined time series of geodetic/geophysical parameters. Geotechnologien book “Satellite geodesy and Earth system science—observation of the Earth from space”. Springer, Berlin (submitted)Google Scholar
  28. Pearlman MR, Degnan JJ, Bosworth JM (2002) The International Laser Ranging Service. Adv Space Res 30(2): 125–143. doi:10.1016/S0273-1177(02)00277-6 CrossRefGoogle Scholar
  29. Petrov L, Boy J-P (2004) Study of the atmospheric pressure loading signals in Very Long Baseline Interferometry observations. J Geophys Res 109: B03405. doi:10.1029/2003JB002500 CrossRefGoogle Scholar
  30. Petrov L, Ma C (2003) Study of harmonic site position variations determined by VLBI. J Geophys Res 108(B4): 2190. doi:10.1029/2002JB001801 CrossRefGoogle Scholar
  31. Poutanen M, Jokela J, Ollikainen M, Koivula H, Bilker M, Virtanen H (2005) Scale variations of GPS time series. In: Sanso F (eds) A window on the future of geodesy, International Association of Geodesy symposia, vol 128. Springer, Berlin, pp 15–20, doi:10.1007/3-540-27432-4_3
  32. Ray J, Altamimi Z, Collilieux X, van Dam T (2007) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12(1): 55–64. doi:10.1007/s10291-007-0067-7 CrossRefGoogle Scholar
  33. Rothacher M, Drewes H, Nothnagel A, Richter B, König D, König R, Panafidina N, Steigenberger P, Thaller D, Angermann D, Kelm R, Seitz M, Meisel B, Müller H, Tesmer V, Artz T, Böckmann S, Schwegmann W (2009) GGOS-D: homogeneous reprocessing and rigorous combination of space geodetic techniques. J Geophys Res (in preparation)Google Scholar
  34. Rülke A, Dietrich R, Fritsche M, Rothacher M, Steigenberger P (2008) Realization of the terrestrial reference system by a reprocessed global GPS network. J Geophys Res 113: B08403. doi:10.1029/2007JB005231 CrossRefGoogle Scholar
  35. Schlüter W, Behrend D (2007) The international VLBI service for geodesy and astrometry (IVS): current capabilities and future prospects. J Geod 81(6–8): 379–384. doi:10.1007/s00190-006-0131-z CrossRefGoogle Scholar
  36. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12): 781–798. doi:10.1007/s00190-007-0148-y CrossRefGoogle Scholar
  37. Seitz F, Krügel M (2009) Modelling vertical site displacements due to surface loads in consideration of crustal inhomogeneities. In: Bosch W, Drewes H (eds) GRF2006 symposium proceedings, International Association of Geodesy symposia, vol 134. Springer, Berlin (in press)Google Scholar
  38. Simmons AJ, Gibson JK (eds) (2000) The ERA-40 Project Plan. ERA-40 Project Report Series No. 1. http://www.ecmwf.int
  39. Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111: B05402. doi:10.1029/2005JB003747 CrossRefGoogle Scholar
  40. Steigenberger P, Boehm J, Tesmer V (2009a) Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. J Geod. doi:10.1007/s00190-009-0311-8
  41. Steigenberger P, Artz T, Böckmann S, Kelm R, König R, Meisel B, Müller H, Nothnagel A, Rudenko S, Tesmer V, Thaller D (2009b) GGOS-D consistent, high-accuracy technique-specific solutions. Geotechnologien book “Satellite geodesy and Earth system science—observation of the Earth from space”. Springer, Berlin (submitted)Google Scholar
  42. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31: L09607. doi:10.1029/2004GL019920 CrossRefGoogle Scholar
  43. Tesmer V, Kutterer H, Drewes H (2004) Simultaneous estimation of a TRF, the EOP and a CRF. In: Vandenberg N, Baver K (eds) IVS 2004 GM proceedings, NASA/CP-2004-212255, pp 311–314Google Scholar
  44. Tesmer V, Boehm J, Heinkelmann R, Schuh H (2006a) Impact of analysis options on the TRF, CRF and position time series estimated from VLBI. In: Behrend D, Baver K (eds) IVS 2006 GM proceedings, NASA/CP-2006-214140, pp 243–251Google Scholar
  45. Tesmer V, Boehm J, Heinkelmann R, Schuh H (2006b) Effect of different tropospheric mapping functions on the TRF, CRF and position time series estimated from VLBI. In: Schuh H, Nothnagel A, Ma C (eds) J Geod 81(6–8):409–421. doi:10.1007/s00190-006-0126-9
  46. Tesmer V, Boehm J, Meisel B, Rothacher M, Steigenberger P (2008) Atmospheric loading coefficients determined from homogeneously reprocessed GPS and VLBI height time series. In: Finkelstein A, Behrend D (eds) IVS 2008 GM proceedings, Russian science series “Nauka”, vol 208, pp 307–313Google Scholar
  47. Titov O, Tesmer V, Boehm J (2004) OCCAM v.6.0 software for VLBI data analysis. In: Vandenberg N, Baver K (eds) IVS 2004 GM proceedings, NASA/CP-2004-212255, pp 267–271Google Scholar
  48. Tregoning P, Herring TA (2006) Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophys Res Lett 33: L23303. doi:10.1029/2006GL027706 CrossRefGoogle Scholar
  49. Tregoning P, Morgan P, Coleman R (2004) The effect of receiver firmware upgrades on GPS vertical timeseries. Cahiers du Centre Europeen du Geodynamique et de Seismologie 23: 37–46Google Scholar
  50. Van Dam T, Wahr J, MillyP C D, Shmakin A B, Blewitt G, Lavallee D, Larson K M (2001) Crustal displacements due to continental water loading. Geophys Res Lett 28(4): 651–654. doi:10.1029/2000GL012120 CrossRefGoogle Scholar
  51. Van Dam T, Wahr J, Lavallee D (2007) A comparison of annual vertical crustal displacements from GPS and gravity recovery and climate experiment (GRACE) over Europe. J Geophys Res 112: B03404. doi:10.1029/2006JB004335 CrossRefGoogle Scholar
  52. Vey S, Dietrich R, Fritsche M, Rülke A, Rothacher M, Steigenberger P (2006) Influence of mapping function parameters on global GPS network analyses: comparisons between NMF and IMF. Geophys Res Lett 33: L01814. doi:10.1029/2005GL024361 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Volker Tesmer
    • 1
    • 2
  • Peter Steigenberger
    • 3
  • Markus Rothacher
    • 4
    • 5
  • Johannes Boehm
    • 6
  • Barbara Meisel
    • 1
  1. 1.Deutsches Geodätisches Forschungsinstitut (DGFI)MunichGermany
  2. 2.OHB-System AGBremenGermany
  3. 3.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMunichGermany
  4. 4.Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum (GFZ)PotsdamGermany
  5. 5.Institute of Geodesy and Photogrammetry, ETH ZurichZurichSwitzerland
  6. 6.Institute of Geodesy and Geophysics (IGG), TU ViennaViennaAustria

Personalised recommendations