Journal of Geodesy

, 83:943 | Cite as

Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading

  • Peter Steigenberger
  • Johannes Boehm
  • Volker Tesmer
Original Article

Abstract

This paper compares estimates of station coordinates from global GPS solutions obtained by applying different troposphere models: the Global Mapping Function (GMF) and the Vienna Mapping Function 1 (VMF1) as well as a priori hydrostatic zenith delays derived from the Global Pressure and Temperature (GPT) model and from the European Centre for Medium-Range Weather Forecasts (ECMWF) numerical weather model data. The station height differences between terrestrial reference frames computed with GMF/GPT and with VMF1/ECMWF are in general below 1 mm, and the horizontal differences are even smaller. The differences of annual amplitudes in the station height can also reach up to 1 mm. Modeling hydrostatic zenith delays with mean (or slowly varying empirical) pressure values instead of the true pressure values results in a partial compensation of atmospheric loading. Therefore, station height time series based on the simple GPT model have a better repeatability than those based on more realistic ECMWF troposphere a priori delays if atmospheric loading corrections are not included. On the other hand, a priori delays from numerical weather models are essential to reveal the full atmospheric loading signal.

Keywords

Troposphere modeling Mapping function Atmospheric loading GPS 

References

  1. Berg H (1948) Allgemeine Meteorologie. Dümmlers Verlag, BonnGoogle Scholar
  2. Boehm J, Schuh H (2004) Vienna mapping functions in VLBI analyses. Geophys Res Lett 31: L01603. doi:10.1029/2003GL018984 CrossRefGoogle Scholar
  3. Boehm J, Niell A, Tregoning P, Schuh H (2006a) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33: L07304. doi:10.1029/2005GL025546 CrossRefGoogle Scholar
  4. Boehm J, Werl B, Schuh H (2006b) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111: B02406. doi:10.1029/2005JB003629 CrossRefGoogle Scholar
  5. Boehm J, Heinkelmann R, Schuh H (2007a) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10): 679–683. doi:10.1007/s00190-007-0135-3 CrossRefGoogle Scholar
  6. Boehm J, Mendes Cerveira PJ, Schuh H, Tregoning P (2007b) The impact of tropospheric mapping functions based on numerical weather models on the determination of geodetic parameters. In: Tregoning P, Rizos C (eds) Dynamic planet—monitoring and understanding a dynamic planet with geodetic and oceanographic tools. Springer, International Association of Geodesy Symposia, vol 130, pp 837–843. doi:10.1007/978-3-540-49350-1_118
  7. Boehm J, Schuh H, Mendes Cerveira PJ, Heinkelmann R (2008) Reference pressure for the Global Geodetic Observing System GGOS. IVS memorandum 2008-002v01. ftp://ivscc.gsfc.nasa.gov/pub/memos/ivs-2008-002v01.pdf
  8. Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) Bernese GPS software version 5.0. Astronomical Institute, University of Bern, BernGoogle Scholar
  9. Dow J, Neilan R, Gendt G (2005) The International GPS Service: celebrating the 10th anniversary and looking to the next decade. Adv Space Res 36(3): 320–326. doi:10.1016/j.asr.2005.05.125 CrossRefGoogle Scholar
  10. Herring T (1992) Modeling atmospheric delays in the analysis of space geodetic data. In: de Munck J, Spoelstra T (eds) Publications on geodesy (New Series), Netherlands Geodetic Commision, Delft, vol 36, pp 157–164, ISBN: 90 6132 243 XGoogle Scholar
  11. Kouba J (2009) Testing of Global Pressure/Temperature (GPT) Model and Global Mapping Function (GMF) in GPS analyses. J Geod 83(3–4): 199–208. doi:10.1007/s00190-008-0229-6 CrossRefGoogle Scholar
  12. MacMillan DS (1995) Atmospheric gradients from very long baseline interferometry observations. Geophys Res Lett 22(9): 1041–1044CrossRefGoogle Scholar
  13. Niell A (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2): 3227–3246. doi:10.1029/95JB03048 CrossRefGoogle Scholar
  14. Petrov L, Boy JP (2004) Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J Geophys Res 109: B03405. doi:10.1029/2003JB002500 CrossRefGoogle Scholar
  15. Ray J, Dong D, Altamimi Z (2004) IGS reference frames: status and future improvements. GPS Solut 8(4): 251–266. doi:10.1007/s10291-004-0110-x CrossRefGoogle Scholar
  16. Rothacher M (2002) Estimation of station heights with GPS. In: Drewes H, Dodson A, Fortes L, Sanchez L, Sandoval P (eds) Vertical reference systems. Springer, International Association of Geodesy Symposia, vol 124, pp 81–90, ISBN: 3-540-43011-3Google Scholar
  17. Rothacher M, Springer T, Schaer S, Beutler G (1998) Processing strategies for regional GPS networks. In: Brunner F (ed) Advances in positioning and reference frames. Springer, International Association of Geodesy Symposia, vol 118, pp 93–100, ISBN: 3-540-64604-3Google Scholar
  18. Saastamoinen J (1973) Contributions to the theory of atmospheric refraction. Bull Geod 107: 13–34. doi:10.1007/BF02522083 CrossRefGoogle Scholar
  19. Snajdrova K, Boehm J, Willis P, Haas R, Schuh H (2005) Multi-technique comparison of tropospheric zenith delays derived during the CONT02 campaign. J Geod 79(10–11): 613–623. doi:10.1007/s00190-005-0010-z Google Scholar
  20. Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111: B05402. doi:10.1029/2005JB003747 CrossRefGoogle Scholar
  21. Steigenberger P, Tesmer V, Krügel M, Thaller D, Schmid R, Vey S, Rothacher M (2007) Comparisons of homogeneously reprocessed GPS and VLBI long time-series of troposphere zenith delays and gradients. J Geod 81(6–8): 503–514. doi:10.1007/s00190-006-0124-y CrossRefGoogle Scholar
  22. Steigenberger P, Rothacher M, Fritsche M, Rülke A, Dietrich R (2009a) Quality of reprocessed GPS satellite orbits. J Geod 83(3–4): 241–248. doi:10.1007/s00190-008-0228-7 CrossRefGoogle Scholar
  23. Steigenberger P, Tesmer V, Schmid R, Rothacher M, Rülke A, Fritsche M, Dietrich R (2009b) Effects of different antenna phase center models on GPS-derived reference frame. In: Drewes H (ed) GRF2006—geodetic reference frames. Springer (accepted)Google Scholar
  24. Tesmer V, Boehm J, Heinkelmann R, Schuh H (2006) Impact of analysis options on the TRF, CRF and position time series estimated from VLBI. In: Behrend D, Baver K (eds) International VLBI service for geodesy and astrometry 2006 general meeting proceedings, NASA/CP-2006-214140, NASA, Greenbelt, pp 243–251Google Scholar
  25. Tesmer V, Boehm J, Heinkelmann R, Schuh H (2007) Effect of different tropospheric mapping functions on the TRF, CRF and position time-series estimated from VLBI. J Geod 81(6–8): 409–421. doi:10.1007/s00190-006-0126-9 CrossRefGoogle Scholar
  26. Tesmer V, Boehm J, Meisel B, Rothacher M, Steigenberger P (2008) Atmospheric loading coefficients determined from homogeneously reprocessed GPS and VLBI height time series. In: Finkelstein A, Behrend D (eds) Measuring the future, proceedings of the fifth IVS general meeting, pp 307–313Google Scholar
  27. Tregoning P, Herring TA (2006) Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophys Res Lett 33(L23303). doi:10.1029/2006GL027706
  28. Vey S, Dietrich R, Fritsche M, Rülke A, Rothacher M, Steigenberger P (2006) Influence of mapping function parameters on global GPS network analyses: comparisons between NMF and IMF. Geophys Res Lett 33: L01814. doi:10.1029/2005GL024361 CrossRefGoogle Scholar
  29. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3): 5005–5017. doi:10.1029/96JB03860 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Peter Steigenberger
    • 1
  • Johannes Boehm
    • 2
  • Volker Tesmer
    • 3
    • 4
  1. 1.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMunichGermany
  2. 2.Institute of Geodesy and GeophysicsVienna University of TechnologyViennaAustria
  3. 3.Deutsches Geodätisches ForschungsinstitutMunichGermany
  4. 4.OHB-System AGBremenGermany

Personalised recommendations