Journal of Geodesy

, Volume 83, Issue 9, pp 817–827 | Cite as

Evaluation and validation of mascon recovery using GRACE KBRR data with independent mass flux estimates in the Mississippi Basin

  • S. Klosko
  • D. Rowlands
  • S. Luthcke
  • F. Lemoine
  • D. Chinn
  • M. Rodell
Original Article

Abstract

The direct recovery of surface mass anomalies using GRACE KBRR data processed in regional solutions provides mass variation estimates with 10-day temporal resolution. The approach undertaken herein uses a tailored orbit estimation strategy based solely on the KBRR data and directly estimates mass anomalies from the GRACE data. We introduce a set of temporal and spatial correlation constraints to enable high resolution mass flux estimates. The Mississippi Basin, with its well understood surface hydrological modelling available from the Global Land Data Assimilation System (GLDAS), which uses advanced land surface modeling and data assimilation techniques, and a wealth of groundwater data, provides an opportunity to quantitatively compare GRACE estimates of the mass flux in the entire hydrological column with those available from independent and reliable sources. Evaluating GRACE’s performance is dependent on the accuracy ascribed to the hydrological information, which in and of itself is a complex challenge (Rodell in Hydrogeol J, doi: 10.1007/s10040-006-0103-7, 2007). Nevertheless, the Mississippi Basin is one of the few regions having a large hydrological signal that can support a meaningful GRACE comparison on the spatial scale resolved by GRACE. The isolation of the hydrological signal is dependent on the adequacy of the forward mass flux modeling for tides and atmospheric pressure variations. While these models have non-uniform global performance they are excellent in the Mississippi Basin. Through comparisons with the independent hydrology, we evaluate the effect on the solution of changing correlation times and distances in the constraints, altering the parameter recovery for areas external to the Mississippi Basin, and changing the relative strength of the constraints with respect to the KBRR data. The accuracy and stability of the mascon solutions are thereby assessed, especially with regard to the constraints used to stabilize the solution. We show that the mass anomalies, as represented by surface layer of water within regional cells have accuracy estimates of ±2–3 cm on par with the best hydrological estimates and consistent with our accuracy estimates for GRACE mass anomaly estimates. These solutions are shown to be very stable, especially for the recovery of semi-annual and longer period trends, where for example, the phase agreement for the dominant annual signal agrees at the 10-day level of resolution provided by GRACE. This validation confirms that mascons provide critical environmental data records for a wide range of applications including monitoring ground water mass changes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alsdorf DE, Lettenmaier DP (2003) Tracking fresh water from space. Science 301: 1491–1494. doi: 10.1126/science.1089802 CrossRefGoogle Scholar
  2. Bertiger W (2002) GRACE: millimeters and microns in orbit. Paper presented at ION GPS, Inst. of Navigation, Portland, ORGoogle Scholar
  3. Chen JL, Wilson CR, Famiglietti JS, Rodell M (2005a) Spatial sensitivity of the Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations. J Geophys Res, 110. doi: 10.1029/2004JB003536
  4. Chen JL, Rodell M, Wilson CR, Famiglietti JS (2005b) Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates. Geophys Res Lett 32: L14405. doi: 10.1029/2005GL022964 CrossRefGoogle Scholar
  5. Chen JL, Wilson CR, Famiglietti JS, Rodell M (2007) Attenuation effect on seasonal basin-scale water storage changes from GRACE time-variable gravity. J Geod 81: 237–245. doi: 10.1007/s00190-006-0104-2 CrossRefGoogle Scholar
  6. Doll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270(1): 105–134CrossRefGoogle Scholar
  7. Guentner A, Werth S, Petrovic S, Schmidt R (2008) Calibration analysis of the global hydrological model WGHM with water mass variations from GRACE gravity data. Paper presented in the Progress in Hydrological Applications Session of GRACE Science Team, San FranciscoGoogle Scholar
  8. Lettenmaier DP, Famiglietti JS (2006) Water from on High. Nature 444: 562–563. doi: 10.1038/444562a CrossRefGoogle Scholar
  9. Luthcke SB, Zwally HJ, Abdalati W, Rowlands DD, Ray RD, Nerem RS, Lemoine FG, McCarthy JJ, Chinn DS (2006a) Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science 314: 1286–1289. doi: 10.1126/science.1130776 CrossRefGoogle Scholar
  10. Luthcke SB, Rowlands DD, Lemoine FG, Klosko SM, Chinn D, McCarthy JJ (2006b) Monthly spherical harmonic gravity field solutions determined from GRACE inter-satellite range-rate data alone. Geophys Res Lett 33: L02402. doi: 10.1029/2005GL024846 CrossRefGoogle Scholar
  11. Milly PCD, Shmakin AB (2002) Global modeling of land water and energy balances. I. The Land Dynamics (LaD) model. J Hydrometerol. 3(3): 283–299 doi: 10.1175/1525-7541(2002)003<0283:GMOLWA>2.0.CO;2 CrossRefGoogle Scholar
  12. Rodell M, Famiglietti JS (2001) An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 37: 1327–1340. doi: 10.1029/2000WR900306 CrossRefGoogle Scholar
  13. Rodell M et al (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3): 381–394. doi: 10.1175/BAMS-85-3-381 CrossRefGoogle Scholar
  14. Rodell M, Chen J, Kato H, Famiglietti JS, Nigro J, Wilson CR (2007) Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol J. doi: 10.1007/s10040-006-0103-7
  15. Rowlands DD, Ray RD, Chinn DS, Lemoine FG (2002) Short-arc analysis of intersatellite tracking data in a gravity mapping mission. J Geod 76: 307–316. doi: 10.1007/s00190-002-0255-8 CrossRefGoogle Scholar
  16. Rowlands DD, Luthcke SB, Klosko SM, Lemoine FG, Chinn DS, McCarthy JJ, Cox CM, Andersen OB (2005) Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys Res Lett 32: L04310. doi: 10.1029/2004GL021908 CrossRefGoogle Scholar
  17. Seo K-W, Wilson CR, Famiglietti JS, Chen JL, Rodell M (2006) Terrestrial water mass load changes from Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 42: W05417. doi: 10.1029/2005WR004255 CrossRefGoogle Scholar
  18. Syed TH, Famiglietti JS, Chen J, Rodell M, Seneviratne SI, Viterbo P, Wilson CR (2005) Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land-atmosphere water balance. Geophys Res Lett 32: L24404. doi: 10.1029/2005GL023851 CrossRefGoogle Scholar
  19. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: Mission overview and early results. Geophys Res Lett 31: L09607. doi: 10.1029/2004GL019920 CrossRefGoogle Scholar
  20. Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang F (2005) GGM02—an improved Earth gravity field model from GRACE. J Geod. doi: 10.1007/s00190-005-0480-z
  21. Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31: L11501. doi: 10.1029/2004GL019779 CrossRefGoogle Scholar
  22. Yeh PJ, Swenson C, Famiglietti JS, Rodell M (2006) Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 42: W12203. doi: 10.1029/2006WR005374 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • S. Klosko
    • 1
  • D. Rowlands
    • 2
  • S. Luthcke
    • 2
  • F. Lemoine
    • 2
  • D. Chinn
    • 1
  • M. Rodell
    • 3
  1. 1.SGT Inc.GreenbeltUSA
  2. 2.Planetary Geodynamics LaboratoryNASA GSFCGreenbeltUSA
  3. 3.Hydrological Sciences BranchNASA GSFCGreenbeltUSA

Personalised recommendations