Journal of Geodesy

, Volume 83, Issue 3–4, pp 375–383 | Cite as

IGS contribution to the ITRF

  • Z. Altamimi
  • X. Collilieux
Original Article


We examine the contribution of the International GNSS Service (IGS) to the International Terrestrial Reference Frame (ITRF) by evaluating the quality of the incorporated solutions as well as their major role in the ITRF formation. Starting with the ITRF2005, the ITRF is constructed with input data in the form of time series of station positions (weekly for satellite techniques and daily for VLBI) and daily Earth Orientation Parameters. Analysis of time series of station positions is a fundamental first step in the ITRF elaboration, allowing to assess not only the stations behavior, but also the frame parameters and in particular the physical ones, namely the origin and the scale. As it will be seen, given the poor number and distribution of SLR and VLBI co-location sites, the IGS GPS network plays a major role by connecting these two techniques together, given their relevance for the definition of the origin and the scale of the ITRF. Time series analysis of the IGS weekly combined and other individual Analysis Center solutions indicates an internal precision (or repeatability) <2 mm in the horizontal component and <5 mm in the vertical component. Analysis of three AC weekly solutions shows generally poor agreement in origin and scale, with some indication of better agreement when the IGS started to use the absolute model of antenna phase center variations after the GPS week 1400 (November 2006).


Reference systems Reference frames ITRF GPS Earth rotation IGS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altamimi Z, Boucher C, Sillard P (2002a) New Trends for the realization of the international terrestrial reference system. Adv Space Res 30(2): 175–184CrossRefGoogle Scholar
  2. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the international terrestrial reference frame for earth science applications. J Geophys Res 107(B10): 2214. doi: 10.1029/2001JB000561 CrossRefGoogle Scholar
  3. Altamimi Z, Sillard P, Boucher C (2004) ITRF2000: from theory to implementation. In: Sansò F (eds) V Hotine-Marussi symposium on mathematical geodesy, international association of geodesy, vol 127. Springer, Berlin, pp 157–163Google Scholar
  4. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters, 2007. J Geophys Res 112: B09401. doi: 10.1029/2007JB004949 CrossRefGoogle Scholar
  5. Altamimi Z, Gambis D, Bizouard C (2008) Rigorous combination to ensure ITRF and EOP consistency. In: Capitaine N (ed) Proceedings of the Journées 2007: Systemes de Référence Spatio-Temporels: the celestial reference frame for the future, Observatoire de Paris, pp 151–154Google Scholar
  6. Amiri-Simkooei AR, Tiberius CCJM, Teunissen PJG (2007) Assessment of noise in GPS coordinate time series: methodology and results. J Geophys Res 112: B07413. doi: 10.1029/2006JB004913 CrossRefGoogle Scholar
  7. Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid earth. J Geophys Res 108(B2): 2103. doi: 10.1029/2002JB002082 CrossRefGoogle Scholar
  8. Blewitt G, Lavallée D, Clarke P, Nurutdinov K (2001) A new global mode of earth deformation: seasonal cycle detected. Science 294(5550): 2342–2345CrossRefGoogle Scholar
  9. Boucher C, Altamimi Z, Duhem L (1992) ITRF 91 and its associated velocity field. IERS Technical Note No. 12, Observatoire de ParisGoogle Scholar
  10. Collilieux X, Altamimi Z, Coulot D, Ray J, Sillard P (2007) Comparison of very long baseline interferometry, GPS, and satellite laser ranging height residuals from ITRF2005 using spectral and correlation methods. J Geophys Res 112: B12403. doi: 10.1029/2007JB004933 CrossRefGoogle Scholar
  11. Collilieux X, Altamimi Z, Ray J, van Dam T, Wu X (2008) Geophysical excitation of translational and radial motions of the international laser ranging network. J Geophys Res (under review)Google Scholar
  12. Dow J M, Neilan R, Gendt G (2005) The international GPS service (IGS): celebrating the 10th anniversary and looking to the next decade. Adv Space Res 36(3): 320–326. doi: 10.1016/j.asr.2005.05.125 CrossRefGoogle Scholar
  13. Farrell WE (1972) Deformation of the earth by surface loads. Rev Geophys 10(3): 761–797CrossRefGoogle Scholar
  14. Ferland R (2004) Reference frame working group technical report. In: Gowey K, Neilan R, Moore A (eds) IGS 2001-2002 technical reports. Jet Propulsion Laboratory Publication 04-017, Pasadena, pp 25–33. Available electronically at
  15. Ferland R (2006) Proposed IGS05 realization, IGS Mail 5447,
  16. Ferland R, Piraszewski RM (2008) The IGS combined station coordinates, earth rotation parameters and apparent geocenter (this issue)Google Scholar
  17. Ge M, Gendt G, Dick G, Zhang FP, Reigber C (2005) Impact of GPS satellite antenna offsets on scale changes in global network solutions. Geophys Res Lett 32: L06310. doi: 10.1029/2004GL022224 CrossRefGoogle Scholar
  18. Hugentobler U (2005) Models in GNSS data analysis. In: Presentation at “advances in GPS data processing and modelling for geodynamics” held at University College London, 9–10 November 2005. Available at
  19. Kouba J (1995) ITRF92/ITRF93 IGS product change, IGS Mail 0824,
  20. Kouba J (1998) ITRF96 IGS product change, IGS Mail 1838.
  21. Kouba J (2003) A guide to using international GPS service (IGS) products,
  22. Kouba J, Ray J, Watkins MM (1998) IGS reference frame realization. In: Dow JM, Kouba J, Springer T (eds) IGS analysis center workshop proceedings, European Space Operations Centre, Darmstadt, pp 139–171. Available at
  23. McCarthy D, Petit G (2004) IERS conventions 2003, IERS technical Note 32, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany. Accessed May 2007,
  24. Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2): 135–143CrossRefGoogle Scholar
  25. Ray J (2004) Reinforcing and securing the IGS reference tracking network. In: van Dam T, Francis O (eds) Proceedings of the state of GPS vertical positioning precision: separation of earth processes by space geodesy. Cahiers du Centre Europeéen de Géodynamique et de Séismologie, vol 23, pp 1–15Google Scholar
  26. Ray J, Dong D, Altamimi Z (2004) IGS reference frames: status and future improvements, GPS solutions, vol 8, no. 4. Springer, Heidelberg. doi: 10.1007/s10291-004-0110-x
  27. Ray J, Altamimi Z, Collilieux X, van Dam T (2007) Anomalous harmonics in the spectra of GPS position estimates. GPS Solution 12(1): 55–64. doi: 10.1007/s10291-007-0067-7 CrossRefGoogle Scholar
  28. Schlueter W, Himwich E, Nothnagel A, Vandenberg N, Whitney A (2002) IVS and its important role in the maintenance of the global reference systems. Adv Space Res 30(2): 145–150CrossRefGoogle Scholar
  29. Sillard P, Boucher C (2001) Review of algebraic constraints in terrestrial reference frame datum definition. J Geod 75: 63–73CrossRefGoogle Scholar
  30. Tavernier G, Fagard H, Feissel-Vernier M, Lemoine F, Noll C, Ries JC, Soudarin L, Willis P (2005) The international DORIS service, IDS. Adv Space Res 36(3): 333–341. doi: 10.1016/j.asr.2005.03.102 CrossRefGoogle Scholar
  31. van Dam T, Wahr J (1987) Displacements of the earth’s surface due to atmospheric loading—effects of gravity and baseline measurements. J Geophys Res 92: 1281–1286CrossRefGoogle Scholar
  32. Williams SDP, Bock Y, Fang P, Jamason P, Nikolaidis RM, Prawirodirdjo L, Miller M, Johnson DJ (2004) Error analysis of continuous GPS position time series. J Geophys Res 109: B03412. doi: 10.1029/2003JB002741 CrossRefGoogle Scholar
  33. Wu X, Heflin M, Ivins E, Fukumori I (2006) Seasonal and interannual global surface mass variations from multisatellite geodetic data. J Geophys Res 111: B09401. doi: 10.1029/2005JB004100 CrossRefGoogle Scholar
  34. Zhang J, Bock Y, Johnson H, Fang P, Williams S, Genrich J, Wdowinski S, Behr J (1997) Southern California permanent GPS geodetic array: error analysis of daily position estimates and site velocities. J Geophys Res 102: B8–1803518056. doi: 10.1029/97JB01380 Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut Géographique National, LAREGMarne-la-ValléeFrance

Personalised recommendations