Journal of Geodesy

, Volume 83, Issue 7, pp 679–687 | Cite as

S2 tide aliasing in GRACE time-variable gravity solutions

Original Article


Errors in high-frequency ocean tide models alias to low frequencies in time-variable gravity solutions from the Gravity Recovery and Climate Experiment (GRACE). We conduct an observational study of apparent gravity changes at a period of 161 days, the alias period of errors in the S2 semidiurnal solar tide. We examine this S2 alias in the release 4 (RL04) reprocessed GRACE monthly gravity solutions for the period April 2002 to February 2008, and compare with that in release 1 (RL01) GRACE solutions. One of the major differences between RL04 and RL01 is the ocean tide model. In RL01, the alias is evident at high latitudes, near the Filchner-Ronne and Ross ice shelves in Antarctica, and regions surrounding Greenland and Hudson Bay. RL04 shows significantly lower alias amplitudes in many of these locations, reflecting improvements in the ocean tide model. However, RL04 shows continued alias contamination between the Ronne and Larson ice shelves, somewhat larger than in RL01, indicating a need for further tide model improvement in that region. For unknown reasons, the degree-2 zonal spherical harmonics (C20) of the RL04 solutions show significantly larger S2 aliasing errors than those from RL01.


GRACE Alias error 161-day Ocean tide Gravity S2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bettadpur S (2003) Level-2 gravity field product user handbook, GRACE 327-734, CSR publ. GR-03-01, University of Texas at Austin, p 17Google Scholar
  2. Bettadpur S (2007a) CSR level-2 processing standards document for product release 04, GRACE 327-742, The GRACE Project, Center for Space Research, University of Texas at AustinGoogle Scholar
  3. Bettadpur S (2007b) Level-2 gravity field product user handbook, GRACE 327-734, The GRACE Project, Center for Space Research, University of Texas at AustinGoogle Scholar
  4. Box G, Jenkins G (1970) Time series analysis, forecasting and control, Holden DayGoogle Scholar
  5. Chambers DP, Wahr J, Nerem RS (2004) Preliminary observations of global ocean mass variations with GRACE. Geophys Res Lett 31: L13310. doi: 10.1029/2004GL020461 CrossRefGoogle Scholar
  6. Chen JL, Wilson CR (2008) Low degree gravitational changes from GRACE, Earth Rotation, geophysical models, and satellite laser ranging. J Geophys Res 113: B06402. doi: 10.1029/2007JB005397 CrossRefGoogle Scholar
  7. Chen JL, Wilson CR, Tapley BD, Famiglietti JS, Rodell M (2005) Seasonal global mean sea level change from altimeter, GRACE, and geophysical models. J Geod 79(9): 532–539. doi: 10.1007/s00190-005-0005-9 CrossRefGoogle Scholar
  8. Chen JL, Wilson CR, Blankenship DD, Tapley BD (2006a) Antarctic mass change rates from GRACE. Geophys Res Lett 33: L11502. doi: 10.1029/2006GL026369 CrossRefGoogle Scholar
  9. Chen JL, Wilson CR, Tapley BD (2006b) Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science 313(5795): 1958–1960. doi: 10.1126/science.1129007 CrossRefGoogle Scholar
  10. Chen JL, Tapley BD, Wilson CR (2006c) Alaskan mountain glacial melting observed by satellite gravimetry. Earth Planet Sci Lett 248: 368–378. doi: 10.1016/j.epsl.2006.05.039 CrossRefGoogle Scholar
  11. Chen JL, Wilson CR, Famiglietti JS, Rodell M (2007) Attenuation effects on seasonal basin-scale water storage change from GRACE time-variable gravity. J Geod 81(4): 237–245. doi: 10.1007/s00190-006-0104-2 CrossRefGoogle Scholar
  12. Deng X, Featherstone WE (2006) A coastal retracking system for satellite radar altimeter waveforms: application to ERS-2 around Australia. J Geophys Res 111: C06012. doi: 10.1029/2005JC003039 CrossRefGoogle Scholar
  13. Desai S (2002) Observing the pole tide with satellite altimetry. J Geophys Res 107: C11,3186. doi: 10.1029/2001JC001224 CrossRefGoogle Scholar
  14. Eanes R (2002) The CSR 4.0 global ocean tide model.
  15. Flechtner F (2007) GFZ level-2 processing standards document for level-2 product release 0004. GeoForschungsZentrum Potsdam, Potsdam, Germany, p 17Google Scholar
  16. Han SC, Jekeli C, Shum CK (2004) Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field. J Geophys Res 109(B18): B04403. doi: 10.1029/2003JB002501 CrossRefGoogle Scholar
  17. Han SC, Shum CK, Matsumoto K (2005) GRACE observations of M2 and S2 ocean tides underneath the Filchner-Ronne and Larsen ice shelves, Antarctica. Geophys Res Lett 32: L20311. doi: 10.1029/2005GL024296 CrossRefGoogle Scholar
  18. Han SC, Ray RD, Luthcke SB (2007) Ocean tidal solutions in Antarctica from GRACE inter-satellite tracking data. Geophys Res Lett 34(21). doi: 10.1029/2007GL031540
  19. Jekeli C (1981) Alternative methods to smooth the earth’s gravity field, Department of Geodetic Science and Surveying, Ohio State University, ColumbusGoogle Scholar
  20. King MA, Padman L (2005) Accuracy assessment of ocean tide models around Antarctica. Geophys Res Lett 32: L23608. doi: 10.1029/2005GL023901 CrossRefGoogle Scholar
  21. Knudsen P (2003) Ocean tides in GRACE monthly averaged gravity fields. Space Sci Rev 108: 261–270. doi: 10.1023/A:1026215124036 CrossRefGoogle Scholar
  22. Lemoine F, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and the NIMA geopotential model EGM96, NASA/TP-1998-206861. Goddard Space Flight Center, GreenbeltGoogle Scholar
  23. Luthcke SB, Rowlands DD, Lemoine FG, Klosko SM, Chinn DS, McCarthy JJ (2006a) Monthly spherical harmonic gravity field solutions determined from GRACE inter-satellite range-rate data alone. Geophys Res Lett 33: L02402. doi: 10.1029/2005GL024846 CrossRefGoogle Scholar
  24. Luthcke SB, Zwally HJ, Abdalati W, Rowlands DD, Ray RD, Nerem RS, Lemoine FG, Chinn DS, Chinn DS (2006b) Recent Greenlandice mass loss by drainage system from satellite gravity observations. Science 314: 1286. doi: 10.1126/science.1130776 CrossRefGoogle Scholar
  25. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modeling the global ocean tides: insights from FES2004. Ocean Dyn 56: 394–415. doi: 10.1007/s10236-006-0086-x CrossRefGoogle Scholar
  26. McCarthy DD, Petit G (2003) IERS Conventions, IERS Technical Note 32Google Scholar
  27. Moore P, King MA (2008) Antarctic ice mass balance estimates from GRACE: tidal aliasing effects. J Geophys Res 113: F02005. doi: 10.1029/2007JF000871 CrossRefGoogle Scholar
  28. Ray RD, Ponte RM (2003) Barometric tides from ECMWF operational analyses. Ann Geophys 21(8): 1897–1910CrossRefGoogle Scholar
  29. Ray RD, Luthcke SB (2006) Tide model errors and GRACE gravimetry: towards a more realistic assessment. Geophys J Int 167(3): 1055–1059. doi: 10.1111/j.1365-246X.2006.03229.x CrossRefGoogle Scholar
  30. Ray RD, Rowlands DD, Egbert GD (2003) Tidal models in a new era of satellite gravimetry. Space Sci Rev 108: 271–282. doi: 10.1023/A:1026223308107 CrossRefGoogle Scholar
  31. Rowlands DD, Luthcke SB, Klosko SM, Lemoine FGR, Chinn DS, McCarthy JJ, Cox CM, Anderson OB (2005) Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys Res Lett 32: L04310. doi: 10.1029/2004GL021908 CrossRefGoogle Scholar
  32. Schrama EJO, Wouters B, Lavalle’e DA (2007) Signal and noise in gravity recovery and climate experiment (GRACE) observed surface mass variations. J Geophys Res 112: B08407. doi: 10.1029/2006JB004882 CrossRefGoogle Scholar
  33. Seo KW, Wilson CR, Han SC, Waliser DE (2008) Gravity recovery and climate experiment (GRACE) alias error from ocean tides. J Geophys Res 113: B03405. doi: 10.1029/2006JB004747 CrossRefGoogle Scholar
  34. Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33: L08402. doi: 10.1029/2005GL025285 CrossRefGoogle Scholar
  35. Tamisiea ME, Leuliette EW, Davis JL, Mitrovica JX (2005) Constraining hydrological and cryospheric mass flux in southeastern Alaska using space-based gravity measurements. Geophys Res Lett 32: L020501. doi: 10.1029/2005GL023961 CrossRefGoogle Scholar
  36. Tapley BD, Bettadpur S, Watkins MM, Reigber C (2004a) The gravity recovery and climate experiment; mission overview and early results. Geophys Res Lett 31(9): L09607. doi: 10.1029/2004GL019920 CrossRefGoogle Scholar
  37. Tapley BD, Bettadpur S, Ries J, Thompson PF, Watkins MM (2004b) GRACE measurements of mass variability in the earth system. Science 305: 503–505. doi: 10.1126/science.1099192 CrossRefGoogle Scholar
  38. Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang F (2005) GGM02 An improved Earth gravity field model from GRACE. J Geod 79: 467–478. doi: 10.1007/s00190-005-0480-z CrossRefGoogle Scholar
  39. Velicogna I, Wahr J (2006a) Measurements of time-variable gravity show mass loss in Antarctica. Science 311. doi: 10.1126/science.1123785
  40. Velicogna I, Wahr J (2006b) Acceleration of Greenland ice mass loss in spring 2004. Nature 443: 329–331. doi: 10.1038/nature05168 CrossRefGoogle Scholar
  41. Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31: L11501. doi: 10.1029/2004GL019779 CrossRefGoogle Scholar
  42. Wagner C, McAdoo D, Klokocník J, Kostelecky J (2006) Degradation of geopotential recovery from short repeat-cycle orbits: application to GRACE monthly fields. J Geod 80(2): 94–103. doi: 10.1007/s00190-006-0036-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Center for Space ResearchUniversity of Texas at AustinAustinUSA
  2. 2.Department of Geological Sciences, Jackson School of GeosciencesUniversity of Texas at AustinAustinUSA
  3. 3.Korea Polar Research Institute (KOPRI), KORDIInchonSouth Korea

Personalised recommendations