Skip to main content

An improved empirical model for the effect of long-period ocean tides on polar motion

Abstract

Because the tide-raising potential is symmetric about the Earth’s polar axis it can excite polar motion only by acting upon non-axisymmetric features of the Earth like the oceans. In fact, after removing atmospheric and non-tidal oceanic effects, polar motion excitation observations show a strong fortnightly tidal signal that is not completely explained by existing dynamical and empirical ocean tide models. So a new empirical model for the effect of the termensual (Mtm and mtm), fortnightly (Mf and mf), and monthly (Mm) tides on polar motion is derived here by fitting periodic terms at these tidal frequencies to polar motion excitation observations that span 2 January 1980 to 8 September 2006 and from which atmospheric and non-tidal oceanic effects have been removed. While this new empirical tide model can fully explain the observed fortnightly polar motion excitation signal during this time interval it would still be desirable to have a model for the effect of long-period ocean tides on polar motion that is determined from a dynamical ocean tide model and that is therefore independent of polar motion observations.

References

  1. Brosche P (1982) Oceanic tides and the rotation of the Earth. In: Fricke WG, Teleki G (eds) Sun and planetary system, Reidel, pp 179–184

  2. Cartwright DE, Edden AC (1973) Corrected tables of tidal harmonics. Geophys J R Astr Soc 33: 253–264

    Google Scholar 

  3. Chao BF (1994) Zonal tidal signals in the Earth’s polar motion. Eos Trans AGU 75(44): 158

    Google Scholar 

  4. Chao BF, Ray RD (1997) Oceanic tidal angular momentum and Earth’s rotation variations. Prog Oceanogr 40: 399–421

    Article  Google Scholar 

  5. Chao BF, Ray RD, Gipson JM, Egbert GD, Ma C (1996) Diurnal/ semidiurnal polar motion excited by oceanic tidal angular momentum. J Geophys Res 101(B9): 20151–20163

    Article  Google Scholar 

  6. Desai SD, Wahr JM (1995) Empirical ocean tide models estimated from TOPEX/POSEIDON altimetry. J Geophys Res 100(C12): 25205–25228

    Article  Google Scholar 

  7. Dickman SR (1993) Dynamic ocean-tide effects on Earth’s rotation. Geophys J Int 112: 448–470

    Article  Google Scholar 

  8. Eubanks TM (1993) Variations in the orientation of the Earth. In: Smith DE, Turcotte DL (eds) Contributions of space geodesy to geodynamics: earth dynamics. American Geophysical Union Geodynamics Series, vol 24. Washington, DC, pp 1–54

  9. Greatbatch RJ (1994) A note on the representation of steric sea level in models that conserve volume rather than mass. J Geophys Res 99: 12767–12771

    Article  Google Scholar 

  10. Gross RS (1993) The effect of ocean tides on the Earth’s rotation as predicted by the results of an ocean tide model. Geophys Res Lett 20(4): 293–296

    Article  Google Scholar 

  11. Gross RS (2003) The GGFC Special Bureau for the Oceans: Past progress and future plans. In: Richter B, Schwegmann W, Dick WR (eds) Proceedings of the IERS workshop on combination research and global geophysical fluids. IERS technical note No 30. Bundesamts für Kartographie und Geodäsie, Frankfurt, Germany, pp 131–138

  12. Gross RS (2007) Combinations of Earth orientation measurements: SPACE2006, COMB2006, and POLE2006. Jet Propulsion Laboratory Publ 07-5, Pasadena, Calif

  13. Gross RS, Hamdan KH, Boggs DH (1996) Evidence for excitation of polar motion by fortnightly ocean tides. Geophys Res Lett 23(14): 1809–1812

    Article  Google Scholar 

  14. Gross RS, Chao BF, Desai S (1997) Effect of long-period ocean tides on the Earth’s polar motion. Prog Oceanogr 40: 385–397

    Article  Google Scholar 

  15. Gross RS, Fukumori I, Menemenlis D (2003) Atmospheric and oceanic excitation of the Earth’s wobbles during 1980–2000. J Geophys Res 108(B8):2370. doi:10.1029/2002JB002143

    Article  Google Scholar 

  16. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Met Soc 77: 437–471

    Article  Google Scholar 

  17. Marshall J, Hill C, Perelman L, Adcroft A (1997a) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J Geophys Res 102: 5733–5752

    Article  Google Scholar 

  18. Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997b) A finite-volume, incompressible, Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res 102: 5753–5766

    Article  Google Scholar 

  19. Salstein DA (2003) The GGFC Special Bureau for the Atmosphere of the International Earth Rotation and Reference Systems Service. In: Richter B, Schwegmann W, Dick WR (eds) Proceedings of the IERS workshop on combination research and global geophysical fluids. IERS technical note No 30. Bundesamts für Kartographie und Geodäsie, Frankfurt, Germany, pp 121–124

  20. Seiler U (1991) Periodic changes of the angular momentum budget due to the tides of the world ocean. J Geophys Res 96(B6): 10287–10300

    Article  Google Scholar 

  21. Simon JL, Bretagnon P, Chapront J, Chapront-Touzé M, Francou G, Laskar J (1994) Numerical expressions for precession formulae and mean elements for the Moon and the planets. Astron Astrophys 282: 663–683

    Google Scholar 

  22. Stammer D, Wunsch C, Fukumori I, Marshall J (2002) State estimation improves prospects for ocean research. Eos Trans AGU 83(27): 289–295

    Article  Google Scholar 

  23. Weis P (2006) Ocean tides and the earth’s rotation—results of a high-resolving ocean model forced by the lunisolar potential. Ph.D. Thesis, Universität Hamburg

  24. Wunsch C, Stammer D (1997) Atmospheric loading and the oceanic “inverted barometer” effect. Rev Geophys 35: 79–107

    Article  Google Scholar 

  25. Zhou YH, Salstein DA, Chen JL (2006) Revised atmospheric excitation function series related to Earth variable rotation under consideration of surface topography. J Geophys Res 111:D12108. doi:10.1029/2005JD006608

    Article  Google Scholar 

Download references

Acknowledgments

I thank S. Dickman for his thoughtful review that led to many improvements to this manuscript. The work described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Support for this work was provided by the Earth Surface and Interior Focus Area of NASA’s Science Mission Directorate. The supercomputers used in this investigation were provided by funding from the JPL Office of the Chief Information Officer.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution,and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard S. Gross.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Gross, R.S. An improved empirical model for the effect of long-period ocean tides on polar motion. J Geod 83, 635–644 (2009). https://doi.org/10.1007/s00190-008-0277-y

Download citation

Keywords

  • Earth rotation
  • Polar motion
  • Ocean tides
  • Oceanic angular momentum
  • Atmospheric angular Momentum