Journal of Geodesy

, Volume 83, Issue 3–4, pp 249–261 | Cite as

IGS Tide Gauge Benchmark Monitoring Pilot Project (TIGA): scientific benefits

Original Article

Abstract

The establishment of a long-term stable global reference frame is important for studying sea level records for, e.g., climate-related studies. GPS stations connected to the tide gauge benchmarks provide the necessary technique. However, the analysis of existing GPS solutions showed inconsistencies within the time series especially for the height component. To solve related issues, in 2001 the IGS Tide Gauge Benchmark Monitoring Pilot Project was established. The aim is the processing and re-processing of GPS data of stations at or near tide gauges in order to provide homogeneous and high-quality estimates of the vertical motion. A second objective is the establishment, maintenance and expansion of existing network of GPS stations at tide gauges. During the recent years six different analysis centers have processed overlapping GPS at tide gauge networks and are providing individual solutions allowing now to provide a combined solution. The ansatz for the combination is explained and quality measures are given. In addition, on the basis of the reconstruction of sea level anomalies, the benefit of using the combined TIGA solution is demonstrated.

Keywords

IGS GLOSS TIGA Seal level Tide gauge GPS Geodetic benchmark monitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res 112: B09401. doi:10.1029/2007JB004949 CrossRefGoogle Scholar
  2. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the international terrestrial reference frame for earth science applications. J Geophys Res 107(B10): 2214. doi:10.1029/2001JB000561 CrossRefGoogle Scholar
  3. Baker TF, Woodworth PL, Blewitt G, Boucher C, Woppelmann G (1997) A European network for sea-level and coastal land level monitoring. J Mar Syst 13: 163–171. doi:10.1016/S0924-7963(96)00118-2 CrossRefGoogle Scholar
  4. Bevis M, Scherer W, Merrifield M (2002) Technical issues and recommendations related to the installation of continuous GPS stations at tide gauges. Mar Geod 25(1): 87–99. doi:10.1080/014904102753516750 CrossRefGoogle Scholar
  5. Blewitt G, Altamimi Z, Davis J, Gross R, Kuo C, Lemoine F et al (2006) Geodetic observations and global reference frame contributions to understanding sea level rise and variability world climate research program workshop on understanding sea-level rise and variability, 6–9 June 2006, UNESCO/IOC, Paris, FranceGoogle Scholar
  6. Blewitt G, Lavallée D (2002) Effect of annual signals on geodetic velocity. J Geophys Res 107(B7):. doi:10.1029/2001JB000570
  7. Bosch W, Drewes H, Kaniuth K, Kahle H, Hernandez N (1999) Sea-level changes and vertical crustal movement in the southern Caribbean from satellite altimetry, tide gauge records and GPS height determinations. XXII IUGG General Assembly, BirminghamGoogle Scholar
  8. Carter WE (ed) (1994) Report of the surrey workshop of the IAPSO tide gauge bench mark fixing committee. Report of a meeting held 13–15 December 1993 at the Institute of Oceanographic Sciences Deacon Laboratory. NOAA Technical Report NOSOES0006, p 81Google Scholar
  9. Carter WE, Aubrey DG, Baker TF, Boucher C, Le Provost, Pugh DT, Peltier WR, Zumberge M, Rapp RH, Shutz RE, Emery KO, Enfield DB (1989) Geodetic fixing of tide gauge benchmarks. Woods Hole Oceanographic Institution Technical Report, WHOI-89-31, p 44Google Scholar
  10. Church A, White NJ, Coleman R, Lambeck K, Mitrovica JX (2004) Estimates of the regional distribution of sea level rise over the 1950–2000 period. J Clim 17:2609–2625 doi :10.1175/1520-0442(2004)017<2609:EOTRDO>2.0.CO;2Google Scholar
  11. Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS Software 5.0. Astronomical Institute University of Berne, BerneGoogle Scholar
  12. Davis JL, Mitrovica JX (1996) Glacial isostatic adjustment and the anomalous tide gauge record of eastern North. Am Nat 379: 331–333Google Scholar
  13. Douglas BC (2001) Sea level change in the era of the recording tide gauge. In: Douglas BC, Kearney MS, Leatherman SP(eds) Sea level rise—history and consequences. Academic Press, New York, pp 37–64CrossRefGoogle Scholar
  14. Feng M, Meyers G (2003) Interannual variability in the tropical Indian Ocean: a two-year time-scale of Indian Ocean Dipole. Deep Sea Res Part II Top Stud Oceanogr 50: 2263–2284. doi:10.1016/S0967-0645(03)00056-0 CrossRefGoogle Scholar
  15. Ferland R, Gendt G, Schöne T (2005) IGS reference frame maintenance. In: Meindl M (ed) Celebrating a decade of the international GPS service, workshop and symposium 2004 proceedings. Astronomical Institute University of Berne, SwitzerlandGoogle Scholar
  16. Ge M, Gendt G, Dick G, Zhang FP, Reigber C (2005) Impact of GPS satellite antenna offsets on scale changes in global network solutions. Geophys Res Lett 32: L06310. doi:10.1029/2004GL022224 CrossRefGoogle Scholar
  17. Ihde J et al. (2007) Conventions for the definition and realization of a conventional vertical reference system (CVRS) IAG inter-commission project, ICP1.2 Vertical Reference FramesGoogle Scholar
  18. IOC (2001) IOC group of experts on the global sea level observing system (GLOSS); seventh session, Honolulu, USA, 26–27 April 2001 IOC. Reports of meetings of experts and equivalent bodies; 168 Publ: 2001; 49.; SC.2002/WS/6; IOC/GE-GLOSS- VII/3Google Scholar
  19. IOC (2006) Manual on sea-level measurements and interpretation, volume IV: an update to 2006. Paris, Intergovernmental Oceanographic Commission of UNESCO, p 78 (IOC Manuals and Guides No.14, vol IV; JCOMM Technical Report No. 31, WMO/TD, No. 1339)Google Scholar
  20. Kaplan A, Kushnir Y, Cane MA, Blumenthal MB (1997) Reduced space optimal analysis for historical data sets: 136 years of Atlantic sea surface temperatures. J Geophys Res 102: 27835–27860CrossRefGoogle Scholar
  21. King M, Coleman R, Nguyen LN (2003) Spurious periodic horizontal signals in sub-daily GPS position estimates. J Geod 77(1–2): 15–21. doi:10.1007/s00190-00002-00308-z CrossRefGoogle Scholar
  22. Lambeck K, Johnston P, Smither C (1998) Sea-level change, glacial rebound and mantle viscosity for northern Europe. Geophys J Int 134: 102–144. doi:10.1046/j.1365-246x.1998.00541.x CrossRefGoogle Scholar
  23. Mitchum GT (2000) An improved calibration of satellite altimetric heights using tide gauge sea levels with adjustment for land motion. Mar Geod 23(3): 145–166. doi:10.1080/01490410050128591 CrossRefGoogle Scholar
  24. Neilan RE, Van Scoy PA, Woodworth PL (eds) (1997) Workshop on methods for monitoring sea level. IGS workshop proceedings. Jet Propulsion Laboratory, PasadenaGoogle Scholar
  25. Nerem RS, Park KD, Schenewerk MS, van Dam TM, Davis JL, Mitrovica JX et al (2001) Observations of glacial isostatic adjustment in the northeastern U.S. using GPS and tide gauge measurements. European Geophysical Society Newsletter, No. 78, p 98Google Scholar
  26. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) Model and GRACE. Annu Rev Earth Planet Sci 32: 111–149. doi:10.1146/annurev.earth.32.082503.144359 CrossRefGoogle Scholar
  27. Plag HP, Axe P, Knudsen P, Richter B, Verstraeten J (2000) European sea-level observing systems (EOSS)—status and future developments. European Commission, Directorate-General for Research, EUR 19682, p 72Google Scholar
  28. Sanchez L, Krügel M (2006) The role of the TIGA project in the unification of classical height systems. Presented at the international IAG/FIG symposium on “Geodetic Reference Frames”, GRF, 9–14 October 2006. Munich, Germany (in press)Google Scholar
  29. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J Geod 81:781–798. doi:10.1007/s00190-007-0148-y CrossRefGoogle Scholar
  30. SINEX Working Group (1996) SINEX—solution independent exchange format. In: Neilan RE, Van Scoy PA, Zumberge JF (eds) Appendix 1 in IGS 1996 analysis centre workshop proceedings, pp 223–276Google Scholar
  31. Schoene T (2006) Linking GPS to tide gauges and tide gauge benchmarks, world climate research program workshop on understanding sea-level rise and variability, 6–9 June 2006, UNESCO/IOC, Paris, FranceGoogle Scholar
  32. Teferle FN, Bingley RM, Williams SDP, Baker TF, Dodson AH (2006) Using continuous GPS and absolute gravity to separate vertical land movements and changes in sea level at tide gauges in the UK. Philos Trans R Soc A 364, 917–930, 910. doi:1098/rsta.2006.1746
  33. Tregoning P, Morgan PJ, Coleman R (2004) The effect of receiver firmware upgrades on GPS vertical timeseries. Cah Cent Eur Geodyn Seismol 23: 37–46Google Scholar
  34. Tregoning P, van Dam T (2005) Atmospheric pressure loading corrections applied to GPS data at the observation level. Geophys Res Lett 32: L22310. doi:10.1029/2005GL024104 CrossRefGoogle Scholar
  35. Woodworth PL, Player R (2003) The Permanent service for mean sea level: an update to the 21st century. J Coast Res 19: 287–295Google Scholar
  36. Wöppelmann G, Aarup T, Schoene T (2007a) An inventory of collocated and nearly-collocated CGPS stations and tide gauges, Progress report on the survey (25 July 2007). http://www.sonel.org/stations/cgps/surv_update.html
  37. Wöppelmann G, Bouin MN, Altamimi Z (2007b) Terrestrial reference frame implementation in global GPS analysis at TIGA ULR consortium. Phys Chem Earth. doi:10.1016/j.pce.2006.11.001
  38. Wöppelmann G, Martin Miguez B, Bouin MN, Altamimi Z (2007c) Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide. Glob Planet Change 57: 396–406. doi:10.1016/j.gloplacha.2007.02.002 CrossRefGoogle Scholar
  39. Zerbini S, Plag HP, Baker TF, Becker M, Billiris H, Burki B et al (1996) Sea level in the Mediterranean: a first step towards separating crustal movements and absolute sea level variations. Glob Planet Change 14: 1–48. doi:10.1016/0921-8181(96)00003-3 CrossRefGoogle Scholar
  40. Zhang FP, Gendt G, Ge M (2007) GPS data processing at GFZ for monitoring the vertical motion of global tide gauge benchmarks, Technical report for projects TIGA and SEAL, GeoForschungsZentrum Potsdam, Scientific Technical Report STR07/02, p 28Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Helmholtz Centre Potsdam GFZGerman Research Centre for GeosciencesPotsdamGermany
  2. 2.Astronomical InstituteUniversity of BernBernSwitzerland

Personalised recommendations