Journal of Geodesy

, Volume 83, Issue 1, pp 57–68 | Cite as

Unification of New Zealand’s local vertical datums: iterative gravimetric quasigeoid computations

  • M. J. Amos
  • W. E. Featherstone
Original Article


New Zealand uses 13 separate local vertical datums (LVDs) based on geodetic levelling from 12 different tide-gauges. We describe their unification using a regional gravimetric quasigeoid model and GPS-levelling data on each LVD. A novel application of iterative quasigeoid computation is used, where the LVD offsets computed from earlier models are used to apply additional gravity reductions from each LVD to that model. The solution converges after only three iterations yielding LVD offsets ranging from 0.24 to 0.58 m with an average standard deviation of ±0.08 m. The so-computed LVD offsets agree, within expected data errors, with geodetically levelled height differences at common benchmarks between adjacent LVDs. This shows that iterated quasigeoid models have a role in vertical datum unification.


Vertical datum unification Iterative quasigeoid computation Geodetic levelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amos MJ (2007) Quasigeoid modelling in New Zealand to unify multiple local vertical datums. PhD Thesis, Department of Spatial Sciences, Curtin University of Technology, PerthGoogle Scholar
  2. Amos MJ, Featherstone WE (2003) Preparations for a new gravimetric geoid model of New Zealand, and some preliminary results. NZ Surv 293: 3–14Google Scholar
  3. Amos MJ, Featherstone WE (2004) A comparison of gridding techniques for terrestrial gravity observations in New Zealand. Poster presented to the Gravity, Geoid and Space Missions Symposium 2004, Oporto, Portugal, 30 August–1 September.
  4. Amos MJ, Featherstone WE, Brett J (2005) Crossover adjustment of New Zealand marine gravity data, and comparisons with satellite altimetry and global geopotential models. In: Jekeli C, Bastos L, Fernandes J (eds) Gravity, geoid and space missions. Springer, Berlin, pp 266–271CrossRefGoogle Scholar
  5. Andersen OB, Knudsen P (2000) The role of satellite altimetry in gravity field modelling in coastal areas. Phys Chem Earth 25(1): 17–24. doi: 10.1016/S1464-1895(00)00004-1)00004-1CrossRefGoogle Scholar
  6. Andersen OB, Knudsen P, Trimmer R (2005) Improved high resolution altimetric gravity field mapping (KMS2002 global marine gravity field). In: Sansò F (eds) A window on the future of geodesy. Springer, Berlin, pp 326–331CrossRefGoogle Scholar
  7. Arabelos D, Tscherning CC (2001) Improvements in height datum transfer expected from the GOCE mission. J Geod 75(5–6): 308–312. doi: 10.1007/s001900100187 CrossRefGoogle Scholar
  8. Beanland S, Blick GH, Darby DJ (1990) Normal faulting in a back-arc basin: geological and geodetic characteristics of the 1987 Edgecumbe earthquake, New Zealand. J Geophys Res 95(B4): 4693–4707CrossRefGoogle Scholar
  9. Beavan RJ, Matheson DW, Denys P, Denham M, Herring T, Hager B, Molnar P (2004) A vertical deformation profile across the Southern Alps, New Zealand, from 3.5 years of continuous GPS data. In: van Dam T, Francis O (eds) Proceedings of the Cahiers du Centre Européen de Géodynamique et de Séismologie workshop: The State of GPS Vertical Positioning Precision: Separation of Earth Processes by Space Geodesy, Luxembourg, vol 23, pp 111–123Google Scholar
  10. Begg JG, McSaveney MJ (2005) Wairarapa fault rupture—vertical deformation in 1855 and a history of similar events from Turakirae Head. In: Langridge R, Townend J, Jones A (eds) The 1855 Wairarapa Earthquake Symposium Proceedings, Greater Wellington Regional Council. Wellington, New Zealand, pp 21–30Google Scholar
  11. Bell RG, Goring DG, de Lange WP (2000) Sea-level change and storm surges in the context of climate change. IPENZ Trans 27(1): 1–10CrossRefGoogle Scholar
  12. Bevin AJ, Otway PM, Wood PR (1984) Geodetic monitoring of crustal deformation in New Zealand. In: Walcott RI (eds) An Introduction to the recent crustal movements of New Zealand, Royal Society Miscellaneous Series 7, Royal Society of New Zealand. Wellington, New Zealand, pp 13–60Google Scholar
  13. Blick GH, Mole D, Pearse MB, Wallen B (1997) Land information New Zealand role in and needs for sea level data. Immediate Report 97/17, Land Information New Zealand, Wellington, New Zealand. Available from:
  14. Boucher C, Altamimi Z, Sillard P (1998) Results and analysis of the ITRF96. IERS Technical Note 24, Observatoire de Paris, Paris, FranceGoogle Scholar
  15. Brett J (2004) Marine gravity crossover adjustment for New Zealand. Report to Land Information New Zealand, Intrepid Geophysics, Melbourne, AustraliaGoogle Scholar
  16. Burša M, Kenyon S, Kouba J, šíma Z, Vatrt V, Vojtíšková M (2004) A global vertical reference frame based on four regional vertical datums. Stud Geophys Geod 48(3): 493–502. doi: 10.1023/b:sgeg.0000037468.48585.e6 CrossRefGoogle Scholar
  17. Burša M, Kenyon S, Kouba J, šíma Z, Vatrt V, Vítek V, Vojtíšková M (2007) The geopotential value W 0 for specifying the relativistic atomic time scale and a global vertical reference system. J Geod 81(2): 103–110. doi: 10.1007/s00190-006-0091-3 CrossRefGoogle Scholar
  18. Cross PA, Hannah J, Hradilek L, Kelm R, Mäkinen J, Merry CL, Sjöberg LE, Steeves RR, Vaníček P, Zolkoski DB (1987) Four-dimensional geodetic positioning. Manuscr Geodaet 12(3): 147–222Google Scholar
  19. Deng XL, Featherstone WE (2006) A coastal retracking system for satellite radar altimeter waveforms: application to ERS-2 around Australia. J Geophys Res 111: C06012. doi: 10.1029/2005JC003039 CrossRefGoogle Scholar
  20. DoSLI (1989) Geodetic survey branch manual of instruction. Department of Survey and Land Information, Wellington, New ZealandGoogle Scholar
  21. Ellmann A (2005) Two deterministic and three stochastic modifications of Stokes’s formula: a case study for the Baltic countries. J Geod 79(1): 11–23. doi: 10.1007/s00190-005-0438-1 CrossRefGoogle Scholar
  22. Featherstone WE (2000) Towards the unification of the Australian height datum between mainland and Tasmania using GPS and AUSGeoid98. Geom Res Aust 73: 33–54Google Scholar
  23. Featherstone WE, Kirby JF (2000) The reduction of aliasing in gravity anomalies and geoid heights using digital terrain data. Geophys J Int 141(1): 204–212. doi: 10.1046/j.1365-246x.2000.00082.x CrossRefGoogle Scholar
  24. Featherstone WE, Sideris MG (1998) Modified kernels in spectral geoid determination: first results from Western Australia. In: Forsberg R, Feissl M, Dietrich R (eds) Geodesy on the Move. Springer, Berlin, pp 188–193Google Scholar
  25. Featherstone WE, Kuhn M (2006) Height systems and vertical datums: a review in the Australian context. J Spatial Sci 51(1): 21–42Google Scholar
  26. Featherstone WE, Evans JD, Olliver JG (1998) A Meissl-modified Vaníček and Kleusberg kernel to reduce the truncation error in gravimetric geoid computations. J Geod 72(3): 154–160. doi: 10.1007/s001900050157 CrossRefGoogle Scholar
  27. Featherstone WE, Kirby JF, Kearsley AHW, Gilliland JR, Johnston GM, Steed J, Forsberg R, Sideris MG (2001) The AUSGeoid98 geoid model of Australia: data treatment, computations and comparisons with GPS-levelling data. J Geod 75(5–6): 313–330. doi: 10.1007/s001900100177 CrossRefGoogle Scholar
  28. Featherstone WE, Holmes SA, Kirby JF, Kuhn M (2004) Comparison of Remove-Compute-Restore and University of New Brunswick techniques to geoid determination over Australia, and inclusion of Wiener-type filters in reference field contribution. J Surv Eng 130(1): 40–47. doi: 10.1061/(ACSE)0733-9453)(2004)130:1(40)CrossRefGoogle Scholar
  29. Gilliland JR (1987) A review of the levelling networks of New Zealand. NZ Surv 271: 7–15Google Scholar
  30. Goldan H-J, Seeber G (1994) Precise tide gauge connection to the island of Helgoland. Mar Geod 17(2): 147–152Google Scholar
  31. Grafarend EW, Ardalan AA (1997) W0: an estimate of the Finnish Height Datum N60, epoch 1993.4 from twenty-five GPS points of the Baltic sea level project. J Geod 71(11): 673–679. doi: 10.1007/s001900050134 CrossRefGoogle Scholar
  32. Haagmans R, De Min E, Van Gelderen M (1993) Fast evaluation of convolution integrals on the sphere using 1D FFT, and a comparison with existing methods for Stokes’ integral. Manuscr Geodaet 18(5): 227–241Google Scholar
  33. Hackney RI, Featherstone WE (2003) Geodetic versus geophysical perspectives of the ‘gravity anomaly’, Geophys J Int 154(1):35–43. doi: 10.1046/j.1365-246X.2003.01941.x [Errata in 154(2):596, doi: 10.1046/j.1365-246X.2003.02058.x and 167(2):585–585, doi: 10.1111/j.1365-246X.2006.03035.x].Google Scholar
  34. Hannah J (1990) Analysis of mean sea level data from New Zealand for the period 1899–1988. J Geophys Res 95(B8): 12399–12405CrossRefGoogle Scholar
  35. Hannah J (2001) An assessment of New Zealand’s height systems and options for a future height datum. Report prepared for Land Information New Zealand, University of Otago, Dunedin, New ZealandGoogle Scholar
  36. Heck B (2003) Rechenverfahren und Auswertemodelle der Landesvermessung, 3rd edn. Wichman, Karlsruhe, GermanyGoogle Scholar
  37. Heck B, Grüninger W (1987) Modification of Stokes’s integral formula by combining two classical approaches. In: Proceedings of the XIX General Assembly of the International Union of Geodesy and Geophysics, Vancouver, Canada, vol 2, pp 309–337Google Scholar
  38. Heck B, Rummel R (1990) Strategies for solving the vertical datum problem using terrestrial and satellite geodetic data. In: Sünkel H, Baker T (eds) Sea-surface topography and the geoid. Springer, Berlin, pp 116–128Google Scholar
  39. Henderson J (1933) The geological aspects of the Hawkes Bay earthquakes. NZ J Sci Tech 15(1): 38–75Google Scholar
  40. Hipkin RG (2000) Modelling the geoid and sea surface topography in coastal areas. Phys Chem Earth 25(1): 9–16. doi: 10.1016/S1464-1895(00)00003-X CrossRefGoogle Scholar
  41. Humphries T (1908) Circular 847. Surveyor-general. Department of Lands and Survey. Wellington, New ZealandGoogle Scholar
  42. Hunt TM, Ferry LM (1975) Gravity measurements at principal New Zealand stations. NZ J Geo Geophys 18(3): 713–720Google Scholar
  43. IAG (1967) Geodetic reference system 1971. Special Publication 3 of Bulletin Géodésique, Paris, FranceGoogle Scholar
  44. Janák J, Vaníček P (2005) Mean free-air gravity anomalies in the mountains. Stud Geophys Geod 49(1): 31–42. doi: 10.1007/s11200-005-1624-6 CrossRefGoogle Scholar
  45. Kirby JF, Forsberg R (1998) A comparison of techniques for the integration of satellite altimeter and surface gravity data for geoid determination. In: Forsberg R, Feissel M, Dietrich R (eds) Geodesy on the move. Springer, Berlin, pp 207–212Google Scholar
  46. Kumar M, Burke KJ (1998) Realizing a global vertical datum with the use of the geoid. In: Vermeer M, ádám J (eds) Report 98:4, Second Continental Worksop on the Geoid, Finnish Geodetic Institute, Masala, Finland, pp 87–94Google Scholar
  47. Laskowski P (1983) The effect of vertical datum inconsistencies on the determination of gravity related quantities. Report 349, Department of Geodetic Science and Surveying, Ohio State University, Columbus, OhioGoogle Scholar
  48. Lemoine FG, Kenyon SC, Factor RG, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA/TP-1998-206861, Goddard Space Flight Center, Greenbelt, USAGoogle Scholar
  49. Lensen GJ, Otway PM (1971) Earthshift and post earthshift deformation associated with the May 1968 Inangahua earthquake, New Zealand. R Soc NZ Bull 9(1): 107–167Google Scholar
  50. LINZ (2007) LINZS25000 Standard for New Zealand Geodetic Datum 2000. Land Information New Zealand, Wellington, New ZealandGoogle Scholar
  51. Martinec Z, Vaníček P, Mainville A, Véronneau M (1996) Evaluation of topographical effects in precise geoid computation from densely sampled heights. J Geod 70(11): 746–754. doi: 10.1007/BF00867153 Google Scholar
  52. Meissl P (1971) Preparations for the numerical evaluation of second-order Molodensky-type formulas. Report 163, Department of Geodetic Science and Surveying, Ohio State University, ColumbusGoogle Scholar
  53. Merry C, Vaníček P (1983) Investigation of local variations of sea surface topography. Mar Geod 7(2): 101–126Google Scholar
  54. Morelli C, Gantar C, Honkaslo T, McConnell RK, Tanner TG, Szabo B, Uotila U, Whalen CT (1974) The International Gravity Standardisation Network 1971 (IGSN71). Special Publication 4 of Bulletin Géodésique, International Association of Geodesy, Paris, FranceGoogle Scholar
  55. Moritz H (1968) On the use of the terrain correction in solving Molodensky’s problem. Report 108, Department of Geodetic Science and Surveying, Ohio State University, ColumbusGoogle Scholar
  56. Moritz H (1980) Geodetic Reference System 1980. B Geod 54(3): 395–405. doi: 10.1007/BF02521480 CrossRefGoogle Scholar
  57. Nagy D (1966) The prism method for terrain corrections using digital computers. Pure Appl Geophys 63(1): 31–39. doi: 10.1007/BF00875156 CrossRefGoogle Scholar
  58. Nagy D (1966) The gravitational attraction of a right angular prism. Geophysics 31(2): 362–371. doi: 10.1190/1.1439779 CrossRefGoogle Scholar
  59. Nahavandchi H, Sjöberg LE (1998) Unification of vertical datums by GPS and gravimetric geoid models using modified Stokes formula. Mar Geod 21(4): 261–273CrossRefGoogle Scholar
  60. OSG (2003) Accuracy standards for geodetic surveys. SG Standard 1, Office of the Surveyor-General, Land Information New Zealand, Wellington, New Zealand. Available from
  61. Otway PM, Blick GH, Scott BJ (2002) Vertical deformation at Lake Taupo, New Zealand, from lake levelling surveys. NZ J Geol Geophys 45(1): 121–132Google Scholar
  62. Pan M, Sjöberg L (1998) Unification of vertical datums by GPS and gravimetric geoid models with application to Fennoscandia. J Geod 72(2): 64–70. doi: 10.1007/s001900050149 CrossRefGoogle Scholar
  63. Pugh D (2004) Changing sea levels: effects of tides, weather and climate. Cambridge University Press, CambridgeGoogle Scholar
  64. Rapp RH (1961) The orthometric height. MS Thesis, Department of Geodetic Science and Surveying, Ohio State University, Columbus, OhioGoogle Scholar
  65. Rapp RH (1995) A world vertical datum proposal. Allgemeine Vermessungs-Nachrichten 102(8–9): 297–304Google Scholar
  66. Rapp RH, Balasubramania N (1992) A conceptual formulation of a world height system. Report 421, Department of Geodetic Science and Surveying, Ohio State University, Columbus, OhioGoogle Scholar
  67. Reilly WI (1972) New Zealand gravity map series. NZ J Geol Geophys 15(1): 3–15Google Scholar
  68. Rizos C, Coleman R, Ananga N (1991) The Bass Strait GPS survey: preliminary results of an experiment to connect Australian height datums. Aust J Photogram Surv 55: 1–25Google Scholar
  69. Rummel R, Teunissen PJG (1988) Height datum definition, height datum correction and the role of the geodetic boundary value problem. B Geod 62(4): 477–498. doi: 10.1007/BF02520239 CrossRefGoogle Scholar
  70. Strykowski G, Forsberg R (1998) Operational merging of satellite airborne and surface gravity data by draping techniques. In: Forsberg R, Feissl M, Dietrich R (eds) Geodesy on the move. Springer, Berlin, pp 207–212Google Scholar
  71. Tapley BD, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Poole S, Wang F (2005) GGM02—an improved Earth gravity field model from GRACE. J Geod 79(8): 467–478. doi: 10.1007/s00190-005-0480-z CrossRefGoogle Scholar
  72. Tscherning CC, Forsberg R, Knudsen P (1992) The GRAVSOFT package for geoid determination. In: Holota P, Vermeer M (eds) Proceedings of the 1st Continental Workshop on the Geoid in Europe, May 11–14, Prague, Czech Republic, pp 327–334Google Scholar
  73. Vaníček P, Featherstone WE (1998) Performance of three types of Stokes’s kernel in the combined solution of the geoid. J Geod 72(12): 684–697. doi: 10.1007/s001900050209 CrossRefGoogle Scholar
  74. Vaníček P, Kleusberg A (1987) The Canadian geoid—Stokesian approach. Manuscr Geod 12(2): 86–98Google Scholar
  75. Walcott RI (1984) The kinematics of the Plate Boundary Zone through New Zealand: a comparison of short- and long-term deformations. Geophys J R Astr Soc 79(2): 613–633Google Scholar
  76. Wellman HW (1979) An uplift map for the South Island of New Zealand, and a model for uplift of the Southern Alps. In: Walcott RI, Cresswell MM (eds) The Origin of the Southern Alps, Bulletin 18, Royal Society of New Zealand. Wellington, New ZealandGoogle Scholar
  77. Wessel P, Watts AB (1988) On the accuracy of marine gravity measurements. J Geophys Res 94(B4): 7685–7729Google Scholar
  78. Wong L, Gore R (1969) Accuracy of geoid heights from modified Stokes kernels. Geophys J R Astr Soc 18: 81–91Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Land Information New ZealandWellingtonNew Zealand
  2. 2.Western Australian Centre for Geodesy and The Institute for Geoscience ResearchCurtin University of TechnologyPerthAustralia

Personalised recommendations