Advertisement

Journal of Geodesy

, Volume 83, Issue 3–4, pp 241–248 | Cite as

Quality of reprocessed GPS satellite orbits

  • Peter SteigenbergerEmail author
  • Markus Rothacher
  • Mathias Fritsche
  • Axel Rülke
  • Reinhard Dietrich
Original Article

Abstract

High-precision Global Positioning System (GPS) satellite orbits are one of the core products of the International GNSS Service (IGS). Since the establishment of the IGS in 1994, the quality and consistency of the IGS orbits has steadily been improved by advances in the modeling of GPS observations. However, due to these model improvements and reference frame changes, the time series of operational orbits are inhomogeneous and inconsistent. This problem can only be overcome by a complete reprocessing starting with the raw observation data. The quality of reprocessed GPS satellite orbits for the time period 1994–2005 will be assessed in this paper. Orbit fits show that the internal consistency of the orbits could be improved by a factor of about two in the early years. Comparisons with the operational IGS orbits show clear discontinuities whenever the reference frame was changed by the IGS. The independent validation with Satellite Laser Ranging (SLR) residuals shows an improvement of up to 30% whereas a systematic bias of 5 cm still persists.

Keywords

Global Positioning System Satellite orbits Orbit modeling Reprocessing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophys Res 112:B09401. doi: 10.1029/2007JB004949 CrossRefGoogle Scholar
  2. Appleby GM, Otsubo T (2005) Laser ranging as a precise tool to evaluate GNSS orbital solutions. In: Garate J, Davila J, Noll C, Pearlman M (eds) 14th International workshop on laser ranging vol 5/2005. Real Instituto y Observatorio de la Armada, San Fernando, Boletin ROAGoogle Scholar
  3. Argus D, Gordon R (1991) No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1. Geophys Res Let 111(18): 2039–2042CrossRefGoogle Scholar
  4. Beutler G (1993) The 1992 IGS Test Campaign, Epoch’92, and the IGS Pilot Service: an overview. In: Beutler G, Brockmann E (eds) Proceedings of the 1993 IGS Workshop, Druckerei der Universität Bern, Berne, pp 3–9Google Scholar
  5. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M (1994) Extended orbit modeling techniques at the CODE Processing Center of the International GPS Service (IGS): theory and initial results. Manuscr Geod 19: 367–386Google Scholar
  6. Boucher C, Altamimi Z, Duhem L (1993) ITRF 92 and its associated velocity field. IERS Tech. Note 15, Observatoire de Paris, ParisGoogle Scholar
  7. Boucher C, Altamimi Z, Duhem L (1994) Results and analysis of the ITRF93. IERS Tech. Note 18, Observatoire de Paris, ParisGoogle Scholar
  8. Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, BernGoogle Scholar
  9. Degnan JJ, Pavlis EC (1994) Laser ranging to GPS satellites with centimeter accuracy. GPS World 5(9): 62–70Google Scholar
  10. DeMets C, Gordon R, Argus D, Stein S (1994) Effect of recent revisions to the geomagnetic reversal timescale on estimates of current plate motions. Geophys Res Lett 21(20): 2191–2194CrossRefGoogle Scholar
  11. Dow J, Neilan R, Gendt G (2005) The International GPS Service: Celebrating the 10th anniversary and looking to the next decade. Adv Space Res 36(3):320–326. doi: 10.1016/j.asr.2005.05.125 CrossRefGoogle Scholar
  12. Eanes R, Bettadpur S (1996) The CSR 3.0 global ocean tide model. Technical memorandum CSR-TM-96-05, Center for Space Research, AustinGoogle Scholar
  13. Ferland R, Gendt G, Schöne T (2005) IGS reference frame maintenance. In: Meindl M (ed) Celebrating a decade of the International GPS Service, Workshop and Symposium 2004. Astronomical Institute, University of Berne, BerneGoogle Scholar
  14. Fliegel HF, Gallini TE (1996) Solar force modeling of Block IIR Global Positioning System satellites. J Spacecr Rockets 33(6): 863–866CrossRefGoogle Scholar
  15. Fliegel H, Gallini T, Swift E (1992) Global Positioning System radiation force model for geodetic applications. J Geophys Res 97(B1): 559–568CrossRefGoogle Scholar
  16. Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32:L23311. doi: 10.1029/2005GL024342 CrossRefGoogle Scholar
  17. Gendt G, Kouba J (2008) Quality and consistency of the IGS combined products. In: IGS Workshop 2006 Proceedings, ESA, DarmstadtGoogle Scholar
  18. Hugentobler U, Schaer S, Beutler G, Bock H, Dach R, Jäggi A, Meindl M, Urschl C, Mervart L, Rothacher M, Wild U, Wiget A, Brock- mann E, Ineichen D, Weber G, Habrich H, Boucher C (2004) CODE IGS analysis center technical report 2002. In: Gowey K, Neilan R, Moore A (eds) International GPS Service 2001–2002 technical report, IGS Central Bureau, Jet Propulsion Laboratory, PasadenaGoogle Scholar
  19. Hugentobler U, Schaer S, Dach R, Meindl M, Urschl C (2005) Routine processing of combined solutions for GPS and GLONASS at CODE. In: Meindl M (ed) Celebrating a decade of the International GPS Service, Workshop and Symposium 2004. Astronomical Institute, University of Berne, Berne, published on CD-ROMGoogle Scholar
  20. Kouba J, Mireault Y (1999) 1998 Analysis coordinator report. In: Gowey K, Neilan R, Moore A (eds) International GPS Service for Geodynamics 1998 technical reports, IGS Central Bureau, Jet Propulsion Laboratory, PasadenaGoogle Scholar
  21. Marini J (1972) Correction of satellite tracking data for an arbitrary tropospheric profile. Radio Sci 7: 223–231CrossRefGoogle Scholar
  22. McCarthy D, Petit G (2004) IERS conventions (2003) IERS Tech. Note 32, Verlag des Bundesamtes für Kartographie und Geodäsie, FrankfurtGoogle Scholar
  23. Niell A (2000) Improved atmospheric mapping functions for VLBI and GPS. Earth Planets Space 52(10): 699–702Google Scholar
  24. Pearlman MR, Degnan JJ, Bosworth JM (2002) The International Laser Ranging Service. Adv Space Res 30(2): 125–143CrossRefGoogle Scholar
  25. Ray J, Dong D, Altamimi Z (2004) IGS reference frames: status and future improvements. GPS Sol 8(4):251–266. doi: 10.1007/s10291-004-0110-x CrossRefGoogle Scholar
  26. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798. doi: 10.1007/s00190-007-0148-y CrossRefGoogle Scholar
  27. Seidelmann PK (1992) Explanatory supplement to the astronomical almanac. University Science Books, Mill Valley, ISBN: 0-935702-68-7Google Scholar
  28. Springer T (2000) Modelling and validating orbits and clocks using the Global Positioning System. Geodätisch Geophysikalische Arbeiten in der Schweiz, 60, Zürich, SwitzerlandGoogle Scholar
  29. Standish E (1998) JPL planetary and lunar ephemerides, DE405/LE405. Interoffice Memorandum IOM 312.F-98-048, Jet Propulsion Laboratory, PasadenaGoogle Scholar
  30. Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111:B05402. doi: 10.1029/2005JB003747 CrossRefGoogle Scholar
  31. Steigenberger P, Tesmer V, Krügel M, Thaller D, Schmid R, Vey S, Rothacher M (2007) Comparisons of homogeneously reprocessed GPS and VLBI long time-series of troposphere zenith delays and gradients. J Geod 81(6–8):503–514. doi: 10.1007/s00190-006-0124-y CrossRefGoogle Scholar
  32. Steigenberger P, Romero I, Fang P (2008) Reprocessing issues, standardization, new models. In: IGS Workshop 2006 Proceedings, ESA, DarmstadtGoogle Scholar
  33. Tapley B, Watkins M, Ries J, Davis G, Eanes R, Poole S, Rim H, Schutz B, Shum C, Nerem R, Lerch F, Marshall J, Klosko S, Pavlis N, Williamson R (1996) The Joint Gravity Model 3. J Geophys Res 101(B12):28 029–28 049, doi: 10.1029/96JB01645 CrossRefGoogle Scholar
  34. Urschl C, Gurtner W, Hugentobler U, Schaer S, Beutler G (2005) Validation of GNSS orbits using SLR observations. Adv Space Res 36(3):412–417. doi: 10.1016/j.asr.2005.03.021 CrossRefGoogle Scholar
  35. Urschl C, Beutler G, Gurtner W, Hugentobler U, Schaer S (2007) Contribution of SLR tracking data to GNSS orbit determination. Adv Space Res 39(10):1515–1523. doi: 10.1016/j.asr.2007.01.038 CrossRefGoogle Scholar
  36. Urschl C, Beutler G, Gurtner W, Hugentobler U, Schaer S (2008) Validation of GNSS orbits using SLR observations. In: IGS Workshop 2006 Proceedings, ESA, DarmstadtGoogle Scholar
  37. Vey S, Dietrich R, Fritsche M, Rülke A, Rothacher M, Steigenberger P (2006) Influence of mapping function parameters on global GPS network analyses: comparisons between NMF and IMF. Geophys Res Lett 33:L01814. doi: 10.1029/2005GL024361 CrossRefGoogle Scholar
  38. Völksen C (2008) Reprocessing of a regional GPS network in EUROPE. In: Sideris M (ed) IUGG 2007 proceedings. Springer, Berlin (submitted)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Peter Steigenberger
    • 1
    • 2
    Email author
  • Markus Rothacher
    • 1
  • Mathias Fritsche
    • 3
  • Axel Rülke
    • 3
  • Reinhard Dietrich
    • 3
  1. 1.Department of Geodesy and Remote SensingGeoForschungsZentrum PotsdamPotsdamGermany
  2. 2.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMunichGermany
  3. 3.Institut für Planetare GeodäsieTechnische Universität DresdenDresdenGermany

Personalised recommendations