Advertisement

Journal of Geodesy

, Volume 82, Issue 10, pp 601–612 | Cite as

A proposal for modelling physical correlations of GPS phase observations

  • Steffen SchönEmail author
  • Fritz K. Brunner
Original Article

Abstract

Physical correlations are generally not considered in the stochastic model of GPS observations. Consequently, the resulting estimated parameters (such as station coordinates) are affected and their variances are too optimistic and therefore not appropriate to statistically test the significance of the estimates. Considering atmospheric physics, turbulent irregularities in the lower atmosphere cause physical correlations between GPS signals propagating through them. Based on turbulence theory, a variance–covariance model for double-differenced (DD) GPS phase observations is developed in this paper, termed SIGMA-C model. The resulting fully populated variance–covariance matrix depends not only on the satellite-station geometry but also on the prevailing atmospheric conditions. It is shown that especially the wind velocity and its direction play a key role for the adequate modelling of physical correlations. The comparison of the correlations predicted by the SIGMA-C model and the empirical auto- and cross-correlation functions of DD from a specially designed GPS test network shows good agreement between data and model. Consequently, the SIGMA-C model seems to be suited for the proper description of physical correlations in GPS phase data. Furthermore, the application of the SIGMA-C model now attenuates the unbounded decrease of formal coordinate variances when the number of observations is increased. Hence for small GPS networks, the new model yields more realistic formal coordinate variances—even for high sampling rates and longer observation sessions.

Keywords

GPS Physical correlations Turbulence theory Refractivity fluctuations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz M, Stegun IA (eds) (1972) Handbook of mathematical functions. Dover, New YorkGoogle Scholar
  2. Amiri-Simkooei AR, Tiberius CC, Teunissen PJG (2007) Assessment of noise in GPS coordinate time series: methodology and results. J Geophys Res 112:B07413. doi:  10.1029/2006JB004913
  3. Armstrong JW and Sramek RA (1982). Observations of tropospheric phase scintillations at 5 GHz on vertical paths. Radio Sci 17(6): 1579–1586 CrossRefGoogle Scholar
  4. Bischoff W, Heck B, Howind J Teusch A (2005) A procedure for testing the assumption of homoscedasticity in least-squares residuals: a case study of GPS carrier phase observations. J Geod 78:397–404. doi:  10.1007/s00190-004-0390-5 Google Scholar
  5. Bischoff W, Heck B, Howind J Teusch A (2006) A procedure for estimating the variance function of linear models and for checking the appropriateness of estimated variances: a case study of GPS carrier phase observations. J Geod 79:604–704. doi:  10.1007/s00190-006-0024-1 Google Scholar
  6. Beutler G, Bauersima I, Gurtner W and Rothacher M (1987). Correlations between simultaneous GPS double difference carrier phase observations in the multistation mode: implementation considerations and first experiences. Manuscripta Geodaetica 12: 40–44 Google Scholar
  7. Beutler G, Gurtner W, Bauersima I and Rothacher M (1986). Efficient computation of the inverse of the covariance matrix of simultaneous GPS carrier phase difference observations. Manuscripta Geodaetica 11: 249–255 Google Scholar
  8. Brunner FK, Hartinger H and Troyer L (1999). GPS signal diffraction modelling: the stochastic SIGMA-Δ model. J Geod 73: 259–267 CrossRefGoogle Scholar
  9. Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS Software Version 5.0. Astronomical Institute, University of BerneGoogle Scholar
  10. Davis JL (1992). The effect of turbulence on atmospheric gradient parameter estimated from ground –based radiometric and space geodetic measurements. Geophys Res Lett 19(1): 2183–2186 CrossRefGoogle Scholar
  11. Edwards CD (1989) The effect of spatial and temporal wet-troposphere fluctuations on connected element interferometry. TDA Progress report 42–97, pp 47–57, JPLGoogle Scholar
  12. El-Rabbany A (1994) The effect of physical correlations on the ambiguity resolution and accuracy estimation in GPS differential positioning. Technical Report 170, Department of Surveying Engineering, University of New Brunswick, FrederictonGoogle Scholar
  13. El-Rabbany A, Kleusberg A (2004) Efficient algorithm for inverse of the fully populated covariance matrix in GPS relative positioning. J Surv Eng 130(1):29–35. doi:  10.1061/(ASCE)0733-9453 Google Scholar
  14. Emardson TR, Jarlemark PO (1999) Atmospheric modelling in GPS analysis and its effect on the estimated geodetic parameters. J Geod 73(6):322–331. doi:  10.1007/s001900050249 Google Scholar
  15. Hanssen RF (2001). Radar interferometry—Data interpretation and error analysis. Kluwer Academic Publishers, Dortrecht Google Scholar
  16. Hartinger H, Brunner FK (1999) Variances of GPS phase observations: the SIGMA-ɛ model. GPS Solut 2/4:35–43. doi:  10.1007/PL00012765 Google Scholar
  17. Howind J (2005) Analyse des stochastischen Modells von GPS-Trägerphasenbeobachtungen. Deutsche Geodätische Kommisson, DGK C584, MunichGoogle Scholar
  18. Howind J, Kutterer H, Heck B (1999) Impact of temporal correlations on GPS-derived relative point positions. J Geod 73(5):246–258. doi:  10.1007/s001900050241 Google Scholar
  19. Koch KR (1999). Parameter estimation and hypothesis testing in linear models, 2 edn. Springer, Berlin Google Scholar
  20. Leick A (2004). GPS satellite surveying, 3 edn. Wiley, New York Google Scholar
  21. Mao A, Harrison CGA and Dixon TH (1999). Noise in GPS coordinate time series. J Geophys Res 104(B2): 2797–2816 CrossRefGoogle Scholar
  22. Rao CR and Kleffe J (1988). Estimation of variance components and applications. North-Holland, Amsterdam Google Scholar
  23. Schön S, Brunner FK (2008) Atmospheric turbulence theory applied to GPS phase data. J geod 82(1):47–57. doi:  10.1007/s00190-007-0156-y Google Scholar
  24. Stull RB (2003). An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dortrecht Google Scholar
  25. Tiberius C, Kenselaar F (2003) Variance component estimation and precise GPS positioning: case study. J Surv Engn 129(1):11–18. doi:  10.1061/(ASCE)0733-9453 Google Scholar
  26. Tiberius C, Jonkman N and Kenselaar F (1999). The stochastics of GPS observables. GPS World 10(2): 49–54 Google Scholar
  27. Teunissen P, Jonkman N, Tiberius C (1998) Weighting GPS dual frequency observations: bearing the cross of cross-correlation. GPS Solut 2(2):28–37. doi:  10.1007/PL00000033 Google Scholar
  28. Treuhaft RN and Lanyi GE (1987). The effect of the dynamic wet troposphere on radio interferometric measurements. Radio Sci 22(2): 251–265 CrossRefGoogle Scholar
  29. Wang J, Satirapod C, Rizos C (2002) Stochastic assessment of GPS carrier phase measurements for precise static relative positioning. J Geod 76:95–104 doi:  10.1007/s00190-001-0225-6 Google Scholar
  30. Wheelon AD (2001). Electromagnetic scintillation—I. Geometrical optics. Cambridge University Press, Cambridge Google Scholar
  31. Williams (2003) The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J Geod 76:483–494. doi:  10.1007/s00190-002-0283-4
  32. Williams S, Bock Y and Fang P (1998). Integrated satellite interferometry: Tropospheric noise, GPS estimates and implication for interferometric synthetic aperture radar products. J Geophys Res 103(B11): 27051–27067 CrossRefGoogle Scholar
  33. Williams S, Bock Y, Fang P, Jamason P, Nikolaidis RM, Prawirodirdjo L Miller M, Johnson DJ (2004) Error analysis of continuous GPS position time series. J Geophys Res. 109:B03412. doi:  10.1029/2003JB002741
  34. Wright MCH (1996). Atmospheric phase noise and aperture-synthesis imaging at millimeter wavelengths. Pub Astr Sci Pac 108: 520–534 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut für Erdmessung (IfE)Leibniz Universität HannoverHannoverGermany
  2. 2.Engineering Geodesy and Measurements Systems (EGMS)Graz University of TechnologyGrazAustria

Personalised recommendations