Advertisement

Journal of Geodesy

, Volume 82, Issue 9, pp 543–553 | Cite as

Detection of small hydrological variations in gravity by repeated observations with relative gravimeters

  • M. NaujoksEmail author
  • A. Weise
  • C. Kroner
  • T. Jahr
Original Article

Abstract

Recently, a new application of time-dependent gravity observations is emerging: the study of natural hydrological mass changes and their underlying processes. Complementary to GRACE data and continuous recordings with superconducting gravimeters, repeated observations with relative instruments on a local network may contribute to gain additional information on spatial changes in hydrology. The questions that need to be addressed are whether the results of these repeated measurements will be of sufficiently high resolution and accuracy, as well as how unique the information obtained will be. To examine this, a local gravity network with maximum point distances of 65 m was established in a hilly area around the Geodynamic Observatory Moxa, Germany. Using three to five LaCoste & Romberg relative gravimeters repeated measurements were carried out in a seasonal rhythm as well as at particular events like snowmelt or dryness in 17 campaigns between November 2004 and April 2007. The standard deviations obtained by least squares adjustment range from ±9 to ±14 nm/s2 for a gravity difference of one campaign, thus for gravity changes between two campaigns from ±13 to ±20 nm/s2. Between the points of the network, spatial gravity changes of up to 171 nm/s2 (139 nm/s2 between two successive campaigns) could be proven significantly. They correlate with changes in the local hydrological situation. Particularly, a steep slope next to the observatory is identified as a gravimetrically significant hydrological compartment. The results obtained contribute to an improved reduction of the local hydrological signal in continuous gravity recordings and provide constraints to hydrological models.

Keywords

Repeated gravity observations Relative gravimeters Least squares adjustment Hydrological variations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe M, Takemoto S, Fukuda Y, Higashi T, Imanishi Y, Iwano S, Ogasawara S, Kobayashi Y, Takiguchi H, Dwipa S, Kusuma DS (2006) Hydrological effects on the superconducting gravimeter observation in Bandung. J Geodyn 41(1–3):288–295. doi: 10.1016/j.jog.2005.08.030 CrossRefGoogle Scholar
  2. Amalvict A, Hinderer J, Mäkinen J, Rosat S, Rogister Y (2004) Long-term and seasonal gravity changes at the Strasbourg station and their relation to crustal deformation and hydrology. J Geodyn 38(3–5):343–353. doi: 10.1016/j.jog.2004.07.010 CrossRefGoogle Scholar
  3. Atzbacher K, Gerstenecker C (1993) Secular gravity variations: recent crustal movements or scale factor changes. J Geodyn 18(1–4):107–121. doi: 10.1016/0264-3707(93)90033-3 CrossRefGoogle Scholar
  4. Bonatz M (1967) Der Gravitationseinfluß der Bodenfeuchte. Zeitschrift für Vermessungswesen 92: 135–139Google Scholar
  5. Bower D, Courtier N (1998) Precipitation effects on gravity measurements at the Canadian absolute gravity site. Phys Earth Planet Int 106(3–4):353–369. doi: 10.1016/S0031-9201(97)00101-5 CrossRefGoogle Scholar
  6. Boy JP, Hinderer J (2006) Study of the seasonal gravity signal in superconducting gravimeter data. J Geodyn 41(1–3):227–233. doi: 10.1016/j.jog.2005.08.035 CrossRefGoogle Scholar
  7. Crossley D, Xu S, van Dam T (1998) Comprehensive analysis of 2 years of SG data from Table Mountain, Colorado. In: Ducarme B, Pâquet P (eds) Proceedings of 13th International Symposium on Earth Tides, Observatoire Royal de Belgique. Schweizerbart’sche Verlagsbuchhandlung, Brussels, pp 659–668Google Scholar
  8. Ekman M, Mäkinen J, Midtsundstad A, Remmer O (1987) Gravity change and land uplift in Fennoscandia 1966–1984. J Geodesy 61(1):60–64. doi: 10.1007/BF02520415 Google Scholar
  9. Elstner C (1987) On common tendencies in repeated absolute and relative gravity measurements in the central part of the GDR. Gerl Beitr z Geophysik 96: 197–205Google Scholar
  10. Elstner C, Kautzleben H (1982) Results of annual gravity measurements along a W–E profile inside the GDR for the period 1970–1980. In: Proceedings of General Meeting of the IAG, Tokyo, pp 341–348Google Scholar
  11. Ergintav S, Doğan U, Gerstenecker C, Çakmak R, Belgen A, Demirel H, Aydin C, Reilinger R (2007) A snapshot (2003 – 2005) of the 3D postseismic deformation for the 1999, M w = 7.4 İzmit earthquake in the Marmara Region, Turkey, by first results of joint gravity and GPS monitoring. J Geodyn 44:1–18. doi: 10.1016/j.jog.2006.12.005 CrossRefGoogle Scholar
  12. Götze HJ, Lahmeyer B (1988) Application of three-dimensional interactive modelling in gravity and magnetics. Geophysics 53(8):1096–1108. doi: 10.1190/1.1442546 CrossRefGoogle Scholar
  13. Großmann W (1969) Grundzüge der Ausgleichsrechnung, 3rd edn. Springer, BerlinGoogle Scholar
  14. Harnisch G, Harnisch M (2006) Hydrological influences in long term gravimeter data series. J Geodyn 41(1–3):276–287. doi: 10.1016/j.jog.2005.08.018 CrossRefGoogle Scholar
  15. Harnisch M, Harnisch G (1999) Hydrological influences in the registrations of superconducting gravimeters. Bull Inf Marées Terrestres 131: 10 161–10 170Google Scholar
  16. Hasan S, Troch P, Boll J, Kroner C (2006) Modeling of the hydrological effect on local gravity at Moxa, Germany. J Hydrometeor 7(3):346–354. doi: 10.1175/JHM488.1 CrossRefGoogle Scholar
  17. Hokkanen T, Korhonen K, Virtanen H, Laine EL (2007a) Effects of the fracture water of bedrock on superconducting gravimeter data. Near Surf Geophys 5: 133–140Google Scholar
  18. Hokkanen T, Virtanen H, Pirttivaara M (2007b) On hydrogeological noise in superconducting gravimeter data. Near Surf Geophys 5: 125–132Google Scholar
  19. Imanishi Y (2000) Present status of SG T011 at Matsushiro, Japan. Cahiers Cent Euro Géodyn Séismol 17: 97–102Google Scholar
  20. Imanishi Y, Sato T, Higashi T, Sun W, Okubo S (2004) A network of superconducting gravimeters detects submicrogal coseismic gravity changes. Science 306:476–478. doi: 10.1126/science.1101875 CrossRefGoogle Scholar
  21. Imanishi Y, Kokubo K, Tatehata H (2006) Effect of underground water on gravity observation at Matsushiro, Japan. J Geodyn 41:221–226. doi: 10.1016/j.jog.2005.08.031 CrossRefGoogle Scholar
  22. Jentzsch G, Weise A, Rey C, Gerstenecker C (2004) Gravity changes and internal processes: Some results obtained from observations at three volcanoes. Pure Appl Geophys 161(7):1415–1431. doi: 10.1007/s00024-004-2512-7 CrossRefGoogle Scholar
  23. Kanngieser E, Kummer K, Torge W, Wenzel HG (1983) Das Gravimeter Eichsystem Hannover. Wiss Arb der Fachrichtung Vermessungswesen der Universität Hannover 120Google Scholar
  24. Krause P, Fink M, Kroner C, Sauter M, Scholten T (2005) Hydrological processes in a small headwater catchment and their impact on gravimetric measurements. In: Proceedings of Headwater 2005, BergenGoogle Scholar
  25. Kroner C (2001) Hydrological effects on gravity data of the Geodynamic Observatory Moxa. J Geod Soc Japan 47(1): 353–358Google Scholar
  26. Kroner C, Jahr T (2006) Hydrological experiments around the superconducting gravimeter at Moxa Observatory. J Geodyn 41(1–3):268–275. doi: 10.1016/j.jog.2005.08.012 CrossRefGoogle Scholar
  27. Kroner C, Jahr T, Naujoks M, Weise A (2007) Hydrological signals in gravity—foe or friend?. In: Rizos C, Tregoning P (eds) Dynamic planet—monitoring and understanding a dynamic planet with geodetic and oceanographic tools, IAG Symposia Series, vol 130. Springer, Heidelberg, pp 504–510Google Scholar
  28. Lambert A, Beaumont C (1977) Nano variations in gravity due to seasonal groundwater movements; implications for the gravitational detection of tectonic movements. J Geophys Res 82: 297–305CrossRefGoogle Scholar
  29. Liard J, Gagnon C (2002) The new A-10 absolute gravimeter at the 2001 International comparison of absolute gravimeters. Metrologia 39(5):477–483. doi: 10.1088/0026-1394/39/5/8 CrossRefGoogle Scholar
  30. Mäkinen J, Tattari S (1988) Soil moisture and groundwater: two sources of gravity variations. Bull Inf Marées Terrestres 63: 103–110Google Scholar
  31. Mäkinen J, Tattari S (1991) The influence of variation in subsurface water storage on observed gravity. In: Proceedings of 11th International Symposium on Earth Tides, 1989, pp 457–471. Schweizerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  32. Meurers B (2006) Long and short term hydrological effects on gravity in Vienna. Bull Inf Marées Terrestres 142: 11,343–11,352Google Scholar
  33. Meurers B, Van Camp M, Petermans T (2007) Correcting superconducting gravity time-series using rainfall modelling at the Vienna and Membach station and application to Earth tide analysis. J Geodesy 81(11):703–712. doi: 10.1007/s00190-007-0137-1 CrossRefGoogle Scholar
  34. Neumeyer J, Barthelmes F, Dierks O, Flechtner F, Harnisch M, Harnisch G, Hinderer J, Imanishi Y, Kroner C, Meurers B, Petrovic S, Reigber C, Schmidt R, Schwintzer P, Sun HP, Virtanen H (2006) Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models. J Geodesy 79(10–11):573–585. doi: 10.1007/s00190-005-0014-8 CrossRefGoogle Scholar
  35. Peter G, Klopping F, Berstis K (1995) Observing and modeling gravity changes caused by soil moisture and groundwater table variations with superconducting gravimeters in Richmond, Florida, U.S.A. Cahiers Cent Euro Géodynam Séismol 11: 147–159Google Scholar
  36. Sato T, Boy JP, Tamura Y, Matsumoto K, Asari K, Plag HP, Francis O (2006) Gravity tide and seasonal gravity variation at Ny-Ålesund, Svalbard in Arctic. J Geodyn 41(1–3):234–241. doi: 10.1016/j.jog.2005.08.016 CrossRefGoogle Scholar
  37. Timmen L, Gitlein O (2004) The capacity of the Scintrex Autograv CG-3M no. 4492 gravimeter for “absolute-scale” surveys. Rev Brasil Cartografia (Braz J Cartogr) 56(2): 89–95Google Scholar
  38. Torge W (1989) Gravimetry. Walter de Gruyter, BerlinGoogle Scholar
  39. Van Camp M, Vanclooster M, Crommen O, Petermans T, Verbeeck K, Meurers B, van Dam T, Dassargues A (2006) Hydrogeological investigations at the Membach station, Belgium, and application to correct long periodic gravity variations. J Geophys Res 111(B10403). doi: 10.1029/2006JB004405
  40. Virtanen H (2000) On the observed hydrological environmental effects on gravity at the Metsähovi station, Finland. Cahiers Cent Euro Géodyn Séismol 17: 169–176Google Scholar
  41. Virtanen H, Tervo M, Bilker-Koivula M (2006) Comparison of superconducting gravimeter observations with hydrological models of various spatial extents. Bull Inf des Marées Terrestres 142: 11,361–11,368Google Scholar
  42. Vitushkin L, Becker M, Jiang Z, Francis O, van Dam TM, Faller J, Chartier JM, Amalvict M, Bonvalot S, Debeglia N, Desogus S, Diament M, Dupont F, Falk R, Gabalda G, Gagnon C, Gattacceca T, Germak A, Hinderer J, Jamet O, Jeffries G, Käker R, Kopaev A, Liard J, Lindau A, Longuevergne L, Luck B, Maderal E, Mäkinen J, Meurers B, Mizushima S, Mrlina J, Newell D, Origlia C, Pujol E, Reinhold A, Richard P, Robinson I, Ruess D, Thies S, Van Camp M, Van Ruymbeke M, de Villalta Compagni M, Williams S (2002) Results of the Sixth International Comparison of Absolute Gravimeters, ICAG-2001. Metrologia 39(5):407–424. doi: 10.1088/0026-1394/39/5/2 CrossRefGoogle Scholar
  43. Wenzel HG (1993) Program package GRAVNA–Adjustment of gravity observations. Fortran-program, Geodetic Institute, University Karlsruhe (unpublished)Google Scholar
  44. Wolf H (1997) Ausgleichsrechnung I, Formeln zur praktischen Anwendung, 3rd edn. Dümmlers, BonnGoogle Scholar
  45. Zerbini S, Richter B, Negusini M, Romagnoli C, Simon D, Domenichini F, Schwahn W (2001) Height and gravity variations by continuous GPS, gravity and environmental parameter observations in the southern Po Plain, near Bologna, Italy. Earth Planet Sci Lett 192(3):267–279. doi: 10.1016/S0012-821X(01)00445-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Applied Geophysics, Institute of GeosciencesFriedrich-Schiller-University JenaJenaGermany

Personalised recommendations