Advertisement

Journal of Geodesy

, Volume 82, Issue 7, pp 403–414 | Cite as

Regional geoid determination in Antarctica utilizing airborne gravity and topography data

  • Mirko Scheinert
  • Jan Müller
  • Reinhard Dietrich
  • Detlef Damaske
  • Volkmar Damm
Original Article

Abstract

Antarctica is the only continent that suffers major gaps in terrestrial gravity data coverage. To overcome this problem and to close these gaps as well as to densify the global satellite gravity field solutions, the International Association of Geodesy (IAG) Commission Project 2.4 “Antarctic Geoid” was set into action. This paper reviews the current situation concerning the gravity field in Antarctica. It is shown that airborne geophysical surveys are the most promising tools to gain new gravity data in Antarctica. In this context, a number of projects to be carried out during the International Polar Year 2007/2008 will contribute to this goal. To demonstrate the feasibility of the regional geoid improvement in Antarctica, we present a case study using gravity and topography data of the southern Prince Charles Mountains, East Antarctica. During the processing, the remove–compute– restore (RCR) technique and least-squares collocation (LSC) were applied. Adding signal parts of up to 6 m to the global gravity field model that was used as a basis, the calculated regional quasigeoid reveals the dominant features of bedrock topography in that region, namely the graben structure of the Lambert glacier system. The accuracy of the improved regional quasigeoid is estimated to be at the level of 15 cm.

Keywords

Antarctica Regional geoid modelling Remove–compute–restore (RCR) technique Aerogravimetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ADD Consortium (2000) Antarctic digital database, Version 3.0. Database, manual and bibliography. Scientific Commitee on Antarctic Research, Cambridge, manual and bibliography, 93 ppGoogle Scholar
  2. 2.
    Aleshkova ND, Golynsky AV, Kurinin RG and Mandrikov VS (2000). Gravity mapping in the southern Weddell Sea region. Polarforschung 67(3): 91–99 (1997, published 2000) Google Scholar
  3. 3.
    Baron-Hay S, Parsons M, Stenning L (2003) Antarctic magnetic and gravity geophysical survey. acquisition and processing report for Prince Charles Mountains Expedition of Germany and Australia (PCMEGA). Technical Report FAS1550, Fugro Airborne Surveys, FloreatGoogle Scholar
  4. 4.
    Barthelmes F (1986) Untersuchungen zur Approximation des äußeren Gravitationsfeldes der Erde durch Punktmassen optimierten Positionen. Veröffentlichungen des Zentralinstituts für Physik der Erde 92, PotsdamGoogle Scholar
  5. 5.
    Barthelmes F and Dietrich R (1991). Use of point masses on optimized positions for the approximations of the gravity field. In: Rapp, RH and Sansò, F (eds) IAG Symposia 106 “Determination of the Geoid–Present and Future”, pp 484–493. Springer, New York Google Scholar
  6. 6.
    Baur O, Sneeuw N (2006) The Slepian approach revisited: dealing with the polar gap in satellite based geopotential recovery. In: Proc. 3rd international GOCE user workshop, 6–8 November 2006, Frascati, CD version, 8 ppGoogle Scholar
  7. 7.
    Bell RE, Childers VA, Arko RA, Blankenship DD and Brozena JM (1999). Airborne gravity and precise positioning for geologic applications. J Geophys Res 104(B7): 15281–15292  doi: 10.1029/1999JB900.122 CrossRefGoogle Scholar
  8. 8.
    Boger SD and Wilson CJL (2005). Early Cambrian crustal shortening and a clockwise P-T-t path from the southern Prince Charles Mountains, East Antarctica: implications for the formation of Gondwana. J Metamorphic Geol 23(7): 603–623  doi: 10.1111/j.1525-1314.2005.00,598.x CrossRefGoogle Scholar
  9. 9.
    Coren F, Marson I, Stoka M and Zanolla C (1997). Computation of the Moho depths and geoid undulation from gravity data in the Ross Sea (Antarctica). In: Ricci, CA (eds) The Antarctic region: geological evidence and processes, Proc. VII Intl. Symp. Antarctic Earth Sciences, Siena, 1995, pp 603–608. Terra Antartica Publication, Siena Google Scholar
  10. 10.
    Coren F, Sterzai P, Capra A, Bitelli G (2004) Local gravimetric geoid determination in North Victoria Land (Antarctica). Presentation at IAG International Symposium “Gravity, Geoid and Space Missions” (GGSM 2004), Porto, August 30–September 3, 2004Google Scholar
  11. 11.
    Damaske D and McLean M (2005). An aerogeophysical survey south of the Prince Charles Mountains, East Antarctica. Terra Antarctica 12(2): 87–98 Google Scholar
  12. 12.
    Damm V (2007) A subglacial topographic model of the southern drainage area of the Lambert Glacier/Amery ice shelf system–results of an airborne ice thickness survey south of the Prince Charles Mountains. Terra Antarctica (accepted for publication)Google Scholar
  13. 13.
    Drewes H (2007). Science rationale of the global geodetic observing system (GGOS). In: Tregoning, P and Rizos, C (eds) IAG symposia 130 “Dynamic Planet—Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools”, pp 703–710. Springer, Berlin Google Scholar
  14. 14.
    Drinkwater MR, Floberghagen R, Haagmans R, Muzi D and Popescu A (2003). GOCE: ESA’s first Earth Explorer Core mission. In: Beutler, GB, Drinkwater, MR, Rummel, R and Steiger R von (eds) Earth gravity field from space—from sensors to earth sciences, Space Sciences Series of ISSI, vol 18, pp 419–432. Kluwer, Dordrecht Google Scholar
  15. 15.
    Ferraccioli F, Jones PC, Curtis ML and Leat PT (2005). Subglacial imprints of early Gondwana break-up as identified from high resolution aerogeophysical data over western Dronning Maud Land, East Antarctica. Terra Nova 17: 573–579  doi: 10.1111/j.1365-3121.2005.00.651.x CrossRefGoogle Scholar
  16. 16.
    Ferraccioli F, Jones PC, Vaughan APM and Leat PT (2006). New aerogeophysical view of the Antarctic Peninsula: More pieces, less puzzle. Geophys Res Lett 33: L05,310  doi: 10.1029/2005GL024.636 CrossRefGoogle Scholar
  17. 17.
    Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Report 355, Ohio State University, ColumbusGoogle Scholar
  18. 18.
    Forsberg R (1993). Impact of airborne gravimetry on geoid determination—the Greenland example. Bull Int Geoid Service 2: 32–43 Google Scholar
  19. 19.
    Forsberg R, Brozena JM (1993) The Greenland Airborne Gravity Project—Comparison of airborne and terrestrial data. In: Montag H, Reigber C (eds) IAG symposia vol 112 (7th Intl Symp “Geodesy and Physics of the Earth”, Potsdam, Oct. 5–10, 1992), Springer, Berlin, pp 171–175Google Scholar
  20. 20.
    Forsberg R and Tscherning C (1997). Topographic effects in gravity modelling for BVP. In: Sansó, F and Rummel, R (eds) Geodetic boundary value problems in view of the one centimeter geoid, Lecture Notes in Earth Sciences, vol 65, pp 241–272. Springer, Berlin Google Scholar
  21. 21.
    Forsberg R, Tscherning C, Knudsen P (2003) GRAVSOFT—Geodetic Gravity Field Modelling Programs. Kort & Matrikelstyrelsen (overview manual)Google Scholar
  22. 22.
    Förste C, Flechtner F, Schmidt R, Meyer U, Stubenvoll R, Barthelmes F, König R, Neumeyer KH, Rothacher M, Reigber C, Biancale R, Bruinsma S, Lemoine JM, Raimondo JC (2005) A new high resolution global gravity field model derived from combination of GRACE and CHAMP mission and altimetry/gravimetry surface gravity data. Poster presentation, EGU General Assembly, April 24–29, 2005, ViennaGoogle Scholar
  23. 23.
    Förste C, Flechtner F, Schmidt R, König R, Meyer U, Stubenvoll R, Rothacher M, Barthelmes F, Neumayer H, Biancale R, Bruinsma S, Lemoine JM, Loyer S (2006) A mean global gravity field model from the combination of satellite mission and altimetry/gravimetry surface data—EIGEN-GL04C. Presentation at EGU Gen. Assembly, Vienna, 3–7 April 2006 (Abstr. 03462)Google Scholar
  24. 24.
    Fritzsche D (2005) Gravimetric profiling in central dronning Maud Land, East Antarctica. In: Paech H (ed) International Geomaud Expedition of the BGR to Central Dronning Maud Land in 1995/96, Volume II: Geophysical Results, Geolog. Jahrbuch, B97, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, pp 165–176Google Scholar
  25. 25.
    Fuchs K, Soffel H (eds) (1984) Geophysik der festen Erde, des Mondes und der Planeten. Landolt-Börnstein, Neue Serie, Gruppe V: Geophysik und Weltraumforschung, Band 2, Teilband a. Springer, BerlinGoogle Scholar
  26. 26.
    Hackney RI and Featherstone WE (2003). Geodetic versus geophysical perspectives of the ‘gravity anomaly’. Geophys J Int 154: 35–43 CrossRefGoogle Scholar
  27. 27.
    Holt JW, Richter TG, Kempf SD, Morse DL and Blankenship DD (2006). Airborne gravity over Lake Vostok and adjacent highlands of East Antarctica. Geochem Geophys Geosys 7(11): 15  doi: 10.1029/2005GC001.177 CrossRefGoogle Scholar
  28. 28.
    Horwath M, Dietrich R, Baessler M, Nixdorf U, Steinhage D, Fritzsche D, Damm V and Reitmayr G (2006). Nivlisen, an Antarctic ice shelf in Dronning Maud Land: Geodetic-glaciological results from a combined analysis of ice thickness, ice surface height and ice flow observations. J Glac 52(176): 17–30 CrossRefGoogle Scholar
  29. 29.
    Jones PC, Johnson AC, Corr H and Frese RRB von (2002). Detecting rift basins in the Evans Ice Stream region of West Antarctica using airborne gravity data. Tectonophys 347: 25–41 CrossRefGoogle Scholar
  30. 30.
    Karner GD, Studinger M and Bell RE (2005). Gravity anomalies of sedimentary basins and their mechanical implications: application to the Ross Sea basins, West Antarctica. Earth Planet Sci Lett 235: 577–596  doi: 10.1016/j.epsl.2005.04.016 CrossRefGoogle Scholar
  31. 31.
    Kenyon S and Forsberg R (2002). Arctic Gravity Project—A Status. In: Sideris, M (eds) Gravity, geoid and geodynamics 2000, IAG symposium 123, pp 391–395. Springer, Heidelberg Google Scholar
  32. 32.
    Knudsen P (1987). Estimation and modelling of the local empirical covariance function using gravity and satellite altimeter data. Bull Géod 61: 145–160 (J Geod 61(2),  doi: 10.1007/BF02521264)CrossRefGoogle Scholar
  33. 33.
    Korth W, Dietrich R, Reitmayr G, Damm V (1998) Regional geoid improvement based on surface gravity data. In: Forsberg R, Feissl M, Dietrich R (eds) IAG symposia 119 “Geodesy on the Move. Gravity, Geoid, Geodynamics, and Antarctica.” (Proc. IAG Scientific Assembly, Rio de Janeiro, Sept. 3–9, 1997). Springer, Berlin, pp 523–528Google Scholar
  34. 34.
    Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and NIMA geopotential model EGM96. NASA/TP 1998-206861, NASA Goddard Space Flight Center, GreenbeltGoogle Scholar
  35. 35.
    Lythe MB, Vaughan DG, the BEDMAP Consortium (2000) BEDMAP – Bed Topography of the Antarctic. 1:10,000,000 scale map. BAS (Misc) 9. British Antarctic Survey, CambridgeGoogle Scholar
  36. 36.
    Mäkinen J, Amalvict M, Shibuya K and Fukuda Y (2007). Absolute gravimetry in Antarctica: status and prospects. J Geodyn 43: 339–357  doi: 10.1016/j.jog.2006.08.002 CrossRefGoogle Scholar
  37. 37.
    Mayer-Gürr T, Eicker A and Ilke KH (2006). Gravity field recovery from GRACE-SST data of short arcs. In: Flury, J, Rummel, R, Reigber, C, Rothacher, M, Boedecker, G, and Schreiber, U (eds) Observation of the Earth system from space, pp 131–148. Springer, Berlin CrossRefGoogle Scholar
  38. 38.
    McLean M and Reitmayr G (2005). An airborne gravity survey south of the Prince Charles Mountains, East Antarctica. Terra Antarctica 12(2): 99–108 Google Scholar
  39. 39.
    Moritz H (1984). Geodetic reference system 1980. Bull Géod 58: 395–405 (J. Geod. 58(3), 388-398,  doi: 10.1007/BF02519014) Google Scholar
  40. 40.
    Nixdorf U, Müller J, Riedel S, Scheinert M, Steinhage D, Wiehl M, Jokat W, Dietrich R, Miller H (2004) Airborne gravity measurements in Dronning Maud Land for the validation, densification and interpretation of new satellite data. Presentation at XXVIII SCAR Meeting and Open Science Conference (SCAR 28), Bremen, July 25–31, 2004Google Scholar
  41. 41.
    Reigber C, Luehr H and Schwintzer P (2002). CHAMP Mission Status. Adv Space Res 30(2): 129–134 CrossRefGoogle Scholar
  42. 42.
    Reitmayr G (1997) Gravity studies of Victoria Land and adjacent Oceans, Antarctica. In: Ricci CA (ed) The Antarctic Region: geological evidence and processes, Proc VII Intl Symp Antarctic Earth Sciences, Siena, 1995, Terra Antartica Publication, Siena, pp 597–602Google Scholar
  43. 43.
    Reitmayr G (2003) Continuation of gravity measurements in Victoria Land and at the Oates Coast, Antarctica, during GANOVEX VII. In: Geolog. Jahrbuch, B95, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, pp 209–235Google Scholar
  44. 44.
    Reitmayr G (2005) Gravity survey in central Dronning Maud Land, East Antarctica, during the 1995/96 GeoMaud Expedition. In: Paech H (ed) International Geomaud Expedition of the BGR to Central Dronning Maud Land in 1995/96, Volume II: Geophysical Results, Geolog. Jahrbuch, B97, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, pp 141–164Google Scholar
  45. 45.
    Rudolph S, Kusche J and Ilk KH (2002). Investigations on the polar gap problem in ESA’s gravity field and steady-state ocean circulation explorer mission (GOCE). J Geodyn 33(1): 65–74 CrossRefGoogle Scholar
  46. 46.
    Rummel R, Balmino G, Johannessen J, Visser P and Woodworth P (2002). Dedicated gravity field missions—principles and aims. J Geodyn 33(1–2): 3–20 CrossRefGoogle Scholar
  47. 47.
    Scheinert M (2005a) The Antarctic Geoid Project: challenges and chances. In: Rizos C, Tregoning P et al (eds) Dynamic Planet 2005—Program and Abstract Book, presentation abstract 345, p 155, Joint Assembly of IAG, IAPSO and IABO, Cairns, August 22–26, 2005Google Scholar
  48. 48.
    Scheinert M (2005). The Antarctic Geoid Project: status report and next activities. In: Jekeli, C, Bastos, L and Fernandes, J (eds) IAG Symposia vol 129 “Gravity, Geoid and Space Missions”, pp 137–142. Springer, Berlin Google Scholar
  49. 49.
    Scheinert M, Capra A, Dietrich R, Müller J, Aleshkova N, Leitchenkov G (2006a) The Antarctic gravity field: status, improvements and prospects of the international polar year. Presentation at the SCAR XXIX Open Science Conference, Hobart, 9–16 July 2006Google Scholar
  50. 50.
    Scheinert M, Capra A, Dietrich R, Müller J, Aleshkova N, Leitchenkov G, Damaske D (2006b) Improvement and densification of the gravity field in antarctica: the Antarctic Geoid Project. Presentation at the 1st international symposium of the International Gravity Field Service (IGFS) Gravity Field of the Earth, Istanbul, Aug 28–Sept 01, 2006Google Scholar
  51. 51.
    Schöne T (1997) Ein Beitrag zum Schwerefeld im Bereich des Wedellmeeres, Antarktis – Nutzung von Altimetermessungen des GEOSAT und ERS–1. Berichte zur Polarforschung 220, Alfred-Wegener-Institut für Polar- und MeeresforschungGoogle Scholar
  52. 52.
    Sjöberg LE (2005). A discussion on the approximations made in the practical implementation of the remove-compute-restore technique in regional geoid modelling. J Geod 78: 645–653  doi: 10.1007/s00190-004-0430-1 CrossRefGoogle Scholar
  53. 53.
    Sneeuw N, van Gelderen M (1997) The polar gap. In: Sansò F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid, Lecture Notes in Earth Sciences vol 65. Springer, Berlin, pp 559–568Google Scholar
  54. 54.
    Studinger M (1998) Compilation and analysis of potential field data from the Weddell Sea, Antarctica: implications for the break-up of Gondwana. Reports on Polar Research 276/1998, Alfred Wegener Institute for Polar and Marine Research, BremerhavenGoogle Scholar
  55. 55.
    Studinger M, Bell RE, Finn CA and Blankenship DD (2002). Mesozoic and cenozoic extensional tectonics of the West Antarctic Rift System from high-resolution airborne geophysical mapping. Roy Soc of New Zealand Bull 35: 563–569 Google Scholar
  56. 56.
    Studinger M, Karner GD, Bell RE, Levin V, Raymond CA and Tikku AA (2003). Geophysical models for the tectonic framework of the Lake Vostok region, East Antarctica. Earth Planet Sci Lett 216(4): 663–677 CrossRefGoogle Scholar
  57. 57.
    Studinger M, Bell RE, Buck WR, Karner GD and Blankenship DD (2004). Sub-ice geology inland of the Transantarctic Mountains in light of new aerogeophysical data. Earth Planet Sci Lett 220: 391–408  doi: 10.1016/S0012-821X(04)00.066-4 CrossRefGoogle Scholar
  58. 58.
    Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S and Wang F (2005). GGM02—an improved earth gravity field model from GRACE. J Geod 79(8): 467–478  doi: 10.1007/s00190-005-0480-z CrossRefGoogle Scholar
  59. 59.
    Tapley BD, Bettadpur S, Watkins M and Reigber C (2004). The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31: L09607  doi: 10.1029/2004GL019920 CrossRefGoogle Scholar
  60. 60.
    Tscherning C (1974) A Fortran IV Program for the determination of the anomalous potential using Least Squares Collocation. Report 212, Ohio State University, ColumbusGoogle Scholar
  61. 61.
    Tscherning C, Rapp R (1974) Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by anomaly degree variance models. Report 208, Ohio State University, ColumbusGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Mirko Scheinert
    • 1
  • Jan Müller
    • 1
  • Reinhard Dietrich
    • 1
  • Detlef Damaske
    • 2
  • Volkmar Damm
    • 2
  1. 1.Institut für Planetare GeodäsieTechnische Universität DresdenDresdenGermany
  2. 2.Federal Institute for Geosciences and Resources (BGR)HannoverGermany

Personalised recommendations