Advertisement

Journal of Geodesy

, Volume 82, Issue 6, pp 347–356 | Cite as

Accuracy analysis of vertical deflection data observed with the Hannover Digital Zenith Camera System TZK2-D

  • Christian Hirt
  • Günter Seeber
Original Article

Abstract

This paper analyses the accuracy of vertical deflection measurements carried out with the Digital Zenith Camera System TZK2-D, an astrogeodetic state-of-the-art instrumentation developed at the University of Hannover. During 107 nights over a period of 3.5 years, the system was used for repeated vertical deflection observations at a selected station in Hannover. The acquired data set consists of about 27,300 single measurements and covers 276 h of observation time, respectively. For the data collected at an earlier stage of development (2003 to 2004), the accuracy of the nightly mean values has been found to be about 0′′.10−0′′.12. Due to applying a refined observation strategy since 2005, the accuracy of the vertical deflection measurements was enhanced into the unprecedented range of 0′′.05 − 0′′.08. Accessing the accuracy level of 0′′.05 requires usually 1 h of observational data, while the 0′′.08 accuracy level is attained after 20 min measurement time. In comparison to the analogue era of geodetic astronomy, the accuracy of vertical deflection observations is significantly improved by about one order of magnitude.

Keywords

Digital Zenith Camera System (DZCS) Vertical deflection Accuracy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brockmann E, Becker M, Bürki B, Gurtner W, Haefele P, Hirt C, Marti U, Müller A, Richard P, Schlatter A, Schneider D, Wiget A (2004) Realization of a Swiss Combined Geodetic Network (CH-CGN). EUREF’04 Symposium of the IAG Commission 1—Reference Frames, Subcommission 1-3a Europe (EUREF), BratislavaGoogle Scholar
  2. 2.
    Bürki B (1989) Integrale Schwerefeldbestimmung in der Ivrea-Zone und deren geophysikalische Interpretation. Geodätisch-geophysikalische Arbeiten in der Schweiz, Nr. 40. Schweizerische Geodätische KommissionGoogle Scholar
  3. 3.
    Bürki B, Müller A, Kahle H-G (2004) DIADEM: the new digital astronomical deflection measuring system for high-precision measurements of deflections of the vertical at ETH Zurich. Electronic Proc. IAG GGSM2004 Meeting in Porto, Portugal. Published also in: CHGeoid 2003, Report 03-33 A (ed. U. Marti et al.), Bundesamt für Landestopographie (swisstopo), Wabern, SchweizGoogle Scholar
  4. 4.
    Heiskanen WA and Moritz H (1967). Physical geodesy. W.H. Freeman, San Francisco Google Scholar
  5. 5.
    Hirt C (2001) Automatic determination of vertical deflections in real-time by combining GPS and digital zenith camera for solving the GPS-height-problem. In: Proceeding 14th international technical meeting of the satellite division of the institute of navigation, Alexandria, pp 2540–2551Google Scholar
  6. 6.
    Hirt C (2004) Entwicklung und Erprobung eines digitalen Zenitkamerasystems für die hochpräzise Lotabweichungsbestimmung. Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik an der Universität Hannover Nr. 253. URL:http://edok01.tib.uni-hannover.de/edoks/e01dh04/393223965.pdf
  7. 7.
    Hirt C (2006). Monitoring and analysis of anomalous refraction using a digital zenith camera system. Astron Astrophy 459: 283–290 doi: 10.1051/0004-6361:20065485 CrossRefGoogle Scholar
  8. 8.
    Hirt C, Bürki B (2002) The digital zenith camera—a new high-precision and economic astrogeodetic observation system for real-time measurement of deflections of the vertical. In: Tziavos I (ed) Proceeding of the 3rd meeting of the international gravity and geoid commission of the international association of geodesy, Thessaloniki, pp 161–166Google Scholar
  9. 9.
    Hirt C, Flury J (2007) Astronomical-topographic levelling using high-precision astrogeodetic vertical deflections and digital terrain model data. J Geod doi: 10.1007/s00190-007-0173
  10. 10.
    Hirt C, Seeber G (2006) High-resolution local gravity field determination at the sub-millimeter level using a digital zenith camera system. In: Tregoning P, Rizos C (ed) Dynamic Planet, Cairns 2005 IAG Symposia 130:316–321Google Scholar
  11. 11.
    Hirt C, Reese B, Enslin H (2004) On the accuracy of vertical deflection measurements using the high-precision digital zenith camera system TZK2-D. In: Jekeli C et al (ed) GGSM 2004 IAG international symposium porto, Portugal, Springer, Heidelberg, pp 197–201Google Scholar
  12. 12.
    Hirt C, Denker H, Flury J, Lindau A, Seeber G (2006) Astrogeodetic validation of gravimetric quasigeoid models in the German Alps—first results. Accepted Paper presented at 1. Meeting of the International Gravity Field Service, IstanbulGoogle Scholar
  13. 13.
    Høg E, Fabricius C, Makarov VV, Urban S, Corbin T, Wycoff G, Bastian U, Schwekendiek P and Wicenec A (2000). The Tycho-2 catalogue of the 2.5 million brightest stars. Astron Astrophy 355: L27–L30 Google Scholar
  14. 14.
    Höpcke W (1980). Fehlerlehre und Ausgleichsrechnung. W. de Gruyter, Berlin, New York Google Scholar
  15. 15.
    Kovalevsky J (1998) Environmental disturbances of astronomical observations. In: Isobe S, Hirayama T. (ed) Astronomical Society of the Pacific (ASP) Conference Series 139:89–96Google Scholar
  16. 16.
    Marti U (1997) Geoid der Schweiz 1997. Geodätisch-geophysikalische Arbeiten in der Schweiz Nr. 56. Schweizerische Geodätische KommissionGoogle Scholar
  17. 17.
    Müller A, Bürki B, Kahle H-G, Hirt C, Marti U (2004) First results from new high-precision measurements of deflections of the vertical in Switzerland. In: Jekeli C et al (ed) GGSM 2004 IAG International Symposium Porto, Portugal, Springer, Heidelberg, pp 143–148Google Scholar
  18. 18.
    Müller A, Bürki B, Limpach P, Kahle H-G, Grigoriadis VN, Vergos~GS, Tziavos IN (2006) Validation of marine geoid models in the North Aegean Sea using satellite altimetry, marine GPS data and astrogeodetic measurements. Paper presented at 1. Meeting of the International Gravity Field Service, IstanbulGoogle Scholar
  19. 19.
    Ramsayer K (1970). Handbuch der Vermessungskunde Band IIa—Geodätische Astronomie. Metzlersche Verlagsbuchhandlung, Stuttgart Google Scholar
  20. 20.
    Torge W (2001). Geodesy, 3rd edn. W. de Gruyter, Berlin Google Scholar
  21. 21.
    Wissel H (1982) Zur Leistungsfähigkeit von transportablen Zenitkameras bei der Lotabweichungsbestimmung. Wissen. Arb. Fach. Vermessungswesen Univ. Hannover Nr. 107Google Scholar
  22. 22.
    Zacharias N, Zacharias MI, Urban SE and Høg E (2000). Comparing Tycho-2 astrometry with UCAC1. Astron J 120: 1148–1152 CrossRefGoogle Scholar
  23. 23.
    Zacharias N, Urban SE, Zacharias MI, Wycoff GL, Hall DM, Monet DG and Rafferty TJ (2004). The Second US Naval Observatory CCD Astrograph Catalog (UCAC2). Astron J 127: 3043–3059 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of GeomaticsHafenCity University HamburgHamburgGermany
  2. 2.Institut für ErdmessungLeibniz Universitüt HannoverHannoverGermany

Personalised recommendations