Journal of Geodesy

, Volume 82, Issue 6, pp 331–346 | Cite as

The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C

  • Christoph Förste
  • Roland Schmidt
  • Richard Stubenvoll
  • Frank Flechtner
  • Ulrich Meyer
  • Rolf König
  • Hans Neumayer
  • Richard Biancale
  • Jean-Michel Lemoine
  • Sean Bruinsma
  • Sylvain Loyer
  • Franz Barthelmes
  • Saskia Esselborn
Original Article

Abstract

The recent improvements in the Gravity Recovery And Climate Experiment (GRACE) tracking data processing at GeoForschungsZentrum Potsdam (GFZ) and Groupe de Recherche de Géodésie Spatiale (GRGS) Toulouse, the availability of newer surface gravity data sets in the Arctic, Antarctica and North-America, and the availability of a new mean sea surface height model from altimetry processing at GFZ gave rise to the generation of two new global gravity field models. The first, EIGEN-GL04S1, a satellite-only model complete to degree and order 150 in terms of spherical harmonics, was derived by combination of the latest GFZ Potsdam GRACE-only (EIGEN-GRACE04S) and GRGS Toulouse GRACE/LAGEOS (EIGEN-GL04S) mean field solutions. The second, EIGEN-GL04S1 was combined with surface gravity data from altimetry over the oceans and gravimetry over the continents to derive a new high-resolution global gravity field model called EIGEN-GL04C. This model is complete to degree and order 360 and thus resolves geoid and gravity anomalies at half- wavelengths of 55 km at the equator. A degree-dependent combination method has been applied in order to preserve the high accuracy from the GRACE satellite data in the lower frequency band of the geopotential and to form a smooth transition to the high-frequency information coming from the surface data. Compared to pre-CHAMP global high-resolution models, the accuracy was improved at a spatial resolution of 200 km (half-wavelength) by one order of magnitude to 3 cm in terms of geoid heights. The accuracy of this model (i.e. the commission error) at its full spatial resolution is estimated to be 15 cm. The model shows a reduced artificial meridional striping and an increased correlation of EIGEN-GL04C-derived geostrophic meridional currents with World Ocean Atlas 2001 (WOA01) data. These improvements have led to select EIGEN-GL04C for JASON-1 satellite altimeter data reprocessing.

Keywords

Earth gravity field model Global gravity field recovery GRACE LAGEOS Surface gravity data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. Bell RE, Childers VA and Arko RA (1999). Airborne and precise positioning for geologic applications. J Geophys Res 104(B7): 15281–18292 CrossRefGoogle Scholar
  2. Biancale R, Balmino G, Lemoine J-M, Marty J-C, Moynot B, Barlier F, Exertier P, Laurain O, Gegout P, Schwintzer P, Reigber Ch, Bode A, König R, Massmann F-H, Raimondo J-C, Schmidt R and Zhu SY (2000). A new global earth’s gravity field model from satellite orbit perturbations: GRIM5-S1. Geophys Res Lett 27: 3611–3614. doi:10.1029/2000GL011721 CrossRefGoogle Scholar
  3. Biancale R, Balmino G, Bruinsma S, Lemoine J-M, Perosanz F, Marty J-C, Valès N, Loyer S, Exerier P, Berio P, Laurain O, Schmidt R, Flechtner F, Reigber C, König R, Meyer U, Neumayer H, Schwintzer P, Zhu S (2004) Development and assessment of GRACE derived gravity field monthly solutions. Eos Trans AGU 85(47), Fall Meet. Suppl., Abstract G23A-02Google Scholar
  4. Carrère L and Lyard F (2003). Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing— comparisons with observations. Geophys Res Lett 30: 1275. doi:10.1029/2002GL016473 CrossRefGoogle Scholar
  5. Desai SD (2002). Observing the pole tide with satellite altimetry. J Geophys Res 107(C11): 3186. doi:10.1029/2001JC001224 CrossRefGoogle Scholar
  6. Eanes R, Ries J, Cheng M (2005) ILRS analysis and associate analysis center reports: Center for Space Research (CSR), University of Texas Analysis Center. In: Pearlman M, Noll C (eds) International Laser Ranging Service, Annual Report 2003–2004, NASA Technical Paper NASA/TP-2005-212780, Goddard Space Flight Center, Greenbelt, pp 110–111Google Scholar
  7. Förste C, Flechtner F, Schmidt R, Meyer U, Stubenvoll R, Barthelmes F, Rothacher M, Biancale R, Bruinsma S and Lemoine J-M (2005). A new high resolution global gravity field model from the combination of GRACE satellite mission and altimetry/gravimetry surface gravity data. Geophys Res Abstr 7: 04561 Google Scholar
  8. Flechtner F (2005) Level-2 processing standards document for release 03, GRACE project technical document: GRACE 327–743 (GR-GFZ-STD-001), approved by Tapley B and Reigber C, available for download as ESM to this paper or at http://isdc.gfz-potsdam.de/grace
  9. Flechtner F, Schmidt R and Meyer U (2006). De-aliasing of short-term atmospheric and oceanic mass variations for GRACE. In: Flury, J, Rummel, R, Reigber, Ch, Rothacher, M, Boedecker, G, and Schreiber, U (eds) Observation of the earth system from space, pp 83–97. Springer, Heidelberg CrossRefGoogle Scholar
  10. Forsberg R, Kenyon S (2004) Gravity and geoid in the Arctic region—the northern gap now filled. In: Proceedings of 2nd GOCE user workshop (on CD-ROM), ESA SP-569. ESA Publication Division, Noordwijk, The NetherlandsGoogle Scholar
  11. Gruber T (2000) Hochlösende Schwerefeldbestimmmung aus Kombination von terrestrischen Messungen und Satellitendaten über Kugelfunktionen. Scientific Technical Report STR0016, GeoForschungsZentrum PotsdamGoogle Scholar
  12. Gruber T (2001) High-resolution gravity field modeling with full variance-covariance matrices. J Geodesy (75):505–514. doi:10.1007/S001900100202
  13. Gruber T, Bode A, Reigber Ch, Schwintzer P, Balmino G, Biancale R and Lemoine J-M (2000). GRIM5C1: Combination solution of the global gravity field to degree and order 120. Geophys Res Lett 27(24): 4005–4008 CrossRefGoogle Scholar
  14. Heck B (1990). An evaluation of some systematic error sources affecting terrestrial gravity anomalies. J Geodesy 64: 88–108. doi:10.1007/BF02530617 Google Scholar
  15. Ihde J, Adam J, Gurtner W, Harsson BG, Sacher M, Schlüter W, Wöppelmann G (2002) The height solution of the European Vertical Reference Network (EUVN). Mitteilungen des BKG, Bd. 25, EUREF Publication No. 11/I, Frankfurt a. M., pp 53–79Google Scholar
  16. Kaula W (1966). Theory of satellite geodesy. Plaisdale, Waltham Google Scholar
  17. Kenyon SC and Pavlis NK (1997). The development of a global surface gravity data base to be used in the joint DMA/GSFC geopotential model. In: Segawa, J, Fujimoto, H and Okubo, S (eds) Gravity, geoid and marine geodesy. IAG Symposia, vol 117, pp 470–477. Springer, Heidelberg Google Scholar
  18. Kim J (2000) Simulation study of a low–low satellite-to-satellite tracking mission. Thesis, Center of Space Research (CSR), The University of Texas at Austin, AustinGoogle Scholar
  19. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olsen TR (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA Technical Paper NASA/TP-1998-206861, Goddard Space Flight Center, GreenbeltGoogle Scholar
  20. Lemoine J-M, Bruisma S, Loyer S, Biancale R, Marty J-C, Perosanz F and Balmino G (2007). Temporal gravity field models inferred from GRACE data. J Adv Space Res doi:10.1016/j.asr.2007.03.062 Google Scholar
  21. Mayer-Gürr T, Eicker A, Ilk K-H (2006) ITG-GRACE02s: a GRACE gravity field derived from short arcs of the satellite’s orbits. In: Proceedings of the first symposium of the international gravity field service, Istanbul (2006, in print)Google Scholar
  22. Milbert DG (1998) Documentation for the GPS benchmark data set of 23-July-1998. IGeS International Geoid Service, Bulletin 8, pp 29–42Google Scholar
  23. Nerem R, Lerch F, Marshall J, Pavlis EC, Putney B, Tapley B, Eanes R, Ries J, Schutz B, Shum C, Watkins M, Klsko S, Chan J, Luthcke S, Pavlis NK, Williamson R, Rapp RH, Biancale R and Nouel F (1994). Gravity model development for TOPEX/POSEIDON: joint gravity models 1 and 2. J Geophys Res 99(C12): 24421–24447 CrossRefGoogle Scholar
  24. Pavlis NK (1988) Modeling and estimation of a low degree geopotential model from terrestrial gravity data. Rep. 386, Dept Geod Sci & Surv, Ohio State Univ, ColumbusGoogle Scholar
  25. Pavlis NK, Holmes SA (2006) Dynamic ocean topography estimates using GRACE-based gravitational models. In: the Proceedings of the 2006 GRACE Science Team Meeting, San Francisco, CA, December 8-9 2006. Available online from ftp://ftp.csr.utexas.edu/pub/grace/Proceedings/Presentations_GSTM2006.pdf
  26. Rapp RH (1997). Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference. J Geod 71: 282–289 CrossRefGoogle Scholar
  27. Rapp RH and Pavlis NK (1990). The development and analysis of geopotential coefficient model to spherical harmonic degree 360. J Geophys Res 95(B13): 21885–21911 CrossRefGoogle Scholar
  28. Reigber C (1989). Gravity field recovery from satellite tracking data. In: Sansò, F and Rummel, R (eds) Theory of satellite geodesy and gravity field determination. Lecture Notes in Earth Sciences, vol 25, pp 197–234. Springer, Heidelberg CrossRefGoogle Scholar
  29. Reigber C, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine J-M, König R, Loyer S, Neumayer H, Marty J-C, Barthlemes F, Perosanz F and Zhu SY (2002). A high-quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys Res Lett 29(14): 1692. doi:10.1029/2002GL015064 CrossRefGoogle Scholar
  30. Reigber C, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine JM, König R, Loyer S, Neumayer H, Marty JC, Barthelmes F, Perosanz F, Zhu SH (2003a) Global gravity field recovery using solely GPS tracking and accelerometer data from CHAMP. Space Sci Rev vol 00, pp 1–12, 2003Google Scholar
  31. Reigber Ch, Schwintzer P, Neumayer KH, Barthelmes F, König R, Förste C, Balmoni G, Biancale R, Lemoine JM, Loyer S, Bruinsma S, Perosanz F and Fayard T (2003b). The CHAMP-only Earth Gravity Field Model EIGEN-2. Adv Space Res 31(8): 1883–1888. doi:10.1016/S0273-1177(03)00162-5 CrossRefGoogle Scholar
  32. Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer K-H, Schwintzer P and Zhu SY (2005). An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J Geodyn 39: 1–10. doi:10.1016/j.jog.2004.07.001 CrossRefGoogle Scholar
  33. Reigber C, Schwintzer P, Stubenvoll R, Schmidt R, Flechtner F, Meyer U, König R, Neumayer KH, Förste C, Barthelmes F, Zhu SY, Balmino G, Biancale R, Lemoine, JM, Meixner H, Raimondo JC (2006) A high resolution global gravity field model combining CHAMP and GRACE satellite mission and surface Data: EIGEN-CG01C. Scientific Technical Report STR0607, GeoForschungsZentrum PotsdamGoogle Scholar
  34. Schmidt R (2007) Zur Bestimmung des cm-Geoids und dessen zeitlichen Variationen mit GRACE. Scientific Technical Report STR0704, GeoForschungsZentrum PotsdamGoogle Scholar
  35. Schmidt R, Flechtner F, König R, Meyer U, Neumayer KH, Reigber C, Rothacher M, Petrovic S, Zhu SY and Güntner A (2007). GRACE time-variable gravity accuracy assessment. In: Tregoning, P and Rizos, C (eds) Monitoring and understanding a dynamic planet with geodetic and oceanographic tools. IAG Symposium Series, vol 130, pp 237–243. Springer, Heidelberg Google Scholar
  36. Schwintzer P, Reigber C, Massmann FH, Barth W, Raimondo JC, Gerstl M, Li H; Biancale R, Balmoni G, Moynot B, Lemoine JM, Marty JC, Boudon Y, Barlier F (1991) A new Earth gravity field model in support of ERS-1 and SPOT-2: GRM4-S1/C1. Final report to the German Space Agency (DARA) and the French Space Agency (CNES), DGFI Munich/GRGS Toulouse 1991Google Scholar
  37. Stammer D, Wunsch C, Giering R, Eckert C, Heinbach P, Marotzke J, Adcraft A, Hill CN and Marshall J (2002). Global ocean circulation during 1992–1997 estimation from ocean observations and a general circulation model. J Geophys Res 107(C9): 3118. doi:10.1029/2001JC000888 CrossRefGoogle Scholar
  38. Stevens C, Antonov JI, Boyer TP, Conkright ME, Locarnini RA, O’Brien TD and HE Garcia (2002). World Ocean Atlas 2001, Temperatures, vol 1. In: Levitus, S (eds) NOAA Atlas, NESDIS 49, US Government Printing Office, Washington Google Scholar
  39. Studinger M (1998) Interpretation and Analyse von Potentialfeldern im Wedellmeer, Antarktis: der Zerfall des Superkontinents Gondvana. Rep Polar Res 276, Alfred Wegener Institut, BremerhavenGoogle Scholar
  40. Tapley B, Watkins M, Ries J, Davis G, Eanes R, Poole S, Rim H, Shum C, Nerem R, Lerch F, Marshall J, Klosko S, Pavlis NK and Williamson R (1996). The joint gravity model 3. J Geophys Res 101(B12): 28029–28049 CrossRefGoogle Scholar
  41. Tapley B, Chambers P, Bettadpur S and Ries J (2003). Large scale ocean circulation from the GRACE GGM01 geoid. Geophys Res Lett 30: 2163. doi:10.1029/2003GL018622 CrossRefGoogle Scholar
  42. Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(L09607). doi:10.1029/2004GL019920
  43. Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S and Wang F (2005). GGM02: an improved Earth gravity field model from GRACE. J Geod 79: 467–478. doi:10.1007/s00190-005-0480-z CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Christoph Förste
    • 1
  • Roland Schmidt
    • 1
  • Richard Stubenvoll
    • 1
  • Frank Flechtner
    • 2
  • Ulrich Meyer
    • 2
  • Rolf König
    • 2
  • Hans Neumayer
    • 2
  • Richard Biancale
    • 3
  • Jean-Michel Lemoine
    • 3
  • Sean Bruinsma
    • 3
  • Sylvain Loyer
    • 3
    • 4
  • Franz Barthelmes
    • 1
  • Saskia Esselborn
    • 1
  1. 1.Department 1 ‘Geodesy and Remote Sensing’GeoForschungsZentrum Potsdam (GFZ)PotsdamGermany
  2. 2.Department 1 ‘Geodesy and Remote Sensing’GeoForschungsZentrum Potsdam (GFZ)WeßlingGermany
  3. 3.Groupe de Recherche de Géodésie Spatiale (GRGS)ToulouseFrance
  4. 4.Collecte Localisation Satellites (CLS)Ramonville Saint-AgneFrance

Personalised recommendations