Advertisement

Journal of Geodesy

, Volume 82, Issue 3, pp 133–145 | Cite as

Geodesy and relativity

  • Jürgen MüllerEmail author
  • Michael Soffel
  • Sergei A. Klioner
Review Paper

Abstract

Relativity, or gravitational physics, has widely entered geodetic modelling and parameter determination. This concerns, first of all, the fundamental reference systems used. The Barycentric Celestial Reference System (BCRS) has to be distinguished carefully from the Geocentric Celestial Reference System (GCRS), which is the basic theoretical system for geodetic modelling with a direct link to the International Terrestrial Reference System (ITRS), simply given by a rotation matrix. The relation to the International Celestial Reference System (ICRS) is discussed, as well as various properties and relevance of these systems. Then the representation of the gravitational field is discussed when relativity comes into play. Presently, the so-called post-Newtonian approximation to GRT (general relativity theory) including relativistic effects to lowest order is sufficient for practically all geodetic applications. At the present level of accuracy, space-geodetic techniques like VLBI (Very Long Baseline Interferometry), GPS (Global Positioning System) and SLR/LLR (Satellite/Lunar Laser Ranging) have to be modelled and analysed in the context of a post-Newtonian formalism. In fact, all reference and time frames involved, satellite and planetary orbits, signal propagation and the various observables (frequencies, pulse travel times, phase and travel-time differences) are treated within relativity. This paper reviews to what extent the space-geodetic techniques are affected by such a relativistic treatment and where—vice versa—relativistic parameters can be determined by the analysis of geodetic measurements. At the end, we give a brief outlook on how new or improved measurement techniques (e.g., optical clocks, Galileo) may further push relativistic parameter determination and allow for refined geodetic measurements.

Keywords

Relativity Reference systems Geodesy Space-geodetic techniques Modelling Parameter determination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashby N (2003) Relativity in the global positioning system, Living Rev. Relativity. http://relativity.livingreviews.org/Articles/lrr-2003-1/Google Scholar
  2. Bertotti B, Iess L, Tortora P (2003) A test of general relativity using radio links with the Cassini spacecraft. Nature 425:374CrossRefGoogle Scholar
  3. Beutler G, Drewes H, Verdun A (2004a) The integrated global geodetic observing system (IGGOS) viewed from the perspective of history. J Geodynam 40:414CrossRefGoogle Scholar
  4. Beutler G, Drewes H, Verdun A (2004b) The new structure of the international Association of Geodesy (IAG) viewed from the perspective of history. J Geodesy 77:566CrossRefGoogle Scholar
  5. Bizouard C, Schastok J, Soffel M, Souchay J (1992) Étude de la Rotation de la Terre dans le Carde de la Relativité Générale: Première Approche. In: Capitaine N (ed) Proc of Les Journées 1992, Systèmes de référence spatio-temporels. Paris Observatory vol 76Google Scholar
  6. Blanchet L, Damour T (1989) Post-Newtonian generation of gravitational waves. Ann Inst H Poincaré 50:377Google Scholar
  7. Bjerhammar A (1985) On a relativistic geodesy. Bull Geod 59:207CrossRefGoogle Scholar
  8. Bretagnon P, Francou G (1988) Astron Astrophys 202:309Google Scholar
  9. Ciufolini I, Pavlis EC (2004) A confirmation of the general relativistic prediction of the Lense–Thirring effect Nature 431:958Google Scholar
  10. Counselman CC, III et al (1974) Solar gravitational deflection of radio waves measured by very-long-baseline interferometry. Phys Rev Lett 33:1621CrossRefGoogle Scholar
  11. Damour T, Soffel M, Xu C (1991) General-relativistic celestial mechanics. I. Method and definition of reference systems. Phys Rev D 43:3273CrossRefGoogle Scholar
  12. Damour T, Soffel M, Xu C (1992) General-relativistic celestial mechanics II. Translational equations of motion. Phys Rev D 45:1017Google Scholar
  13. Damour T, Soffel M, Xu C (1993) General-relativistic celestial mechanics III. Rotational equations of motion. Phys Rev D 47:3124Google Scholar
  14. Damour T, Soffel M, Xu C (1994) General-relativistic celestial mechanics IV. Theory of satellite motion. Phys Rev D 49:618Google Scholar
  15. Einstein, A. (1905) Zur Elektrodynamik bewegter Körper, Ann Phys 17:891Google Scholar
  16. Eubanks TM (ed) (1991) Proceedings of the US Naval Observatory Workshop on Relativistic Models for Use in Space Geodesy. US Naval Observatory, Washington, DCGoogle Scholar
  17. Eubanks TM, Matsakis DN, Martin JO, Archinal BA, McCarthy DD, Klioner SA, Shapiro S, Shapiro I.I (1997) Advances in solar system tests of gravity. In: Proc of The Joint APS/AAPT Joint Meeting, April 18–21, 1997, American Physical Society, Washington DC, abstract #K11.05. http://flux.aps.org/meetings/ YR97/BAPSAPR97/abs/S1280005.html.Google Scholar
  18. Eubanks TM, Martin JO, Archinal BA, Josties FJ, Klioner SA, Shapiro S, Shapiro I.I (1998) Advances in solar system tests of gravity. Preprint of the US Naval Observatory, available upon requestGoogle Scholar
  19. Everitt CWF (1974) The Gyroscope Experiment I. General description and Analysis of Gyroscope Performance. In: Bertotti B (ed) Proc Int School Phys ‘Enrico Fermi’ Course LVI. New Academic Press, New York, p 331Google Scholar
  20. Everitt CWF et al (2001) Gravity probe B: countdown to launch. In: Lämmerzahl C, Everitt CWF, Hehl F (eds) Gyros, clocks, interferometers: testing relativistic gravity in space. Springer, Berlin, p 52CrossRefGoogle Scholar
  21. Fairhead L, Bretagnon P (1990) An analytical formula for the time transformation TB-TT. Astron Astrophys 229:240Google Scholar
  22. Fomalont EB, Sramek RA (1976) Measurements of the solar gravitational deflection of radio waves in agreement with general relativity. Phys Rev Lett 36:1475CrossRefGoogle Scholar
  23. Fukushima T (1994) Lunar VLBI observation model. Astron Astrophys 291:320Google Scholar
  24. Fukushima T (1995) Time Ephemeris. Astron Astrophys 294:895Google Scholar
  25. Groten E (2000) Report of Special Commission 3 of IAG. In: Johnston KJ, McCarhy DD, Luzum BJ, Kaplan GH (eds) Proc IAU Colloquium 180, “Towards Models and Constants for Sub-Microarcsecond Astrometry”. US Naval Observatory, Washington DC, p 337Google Scholar
  26. Gwinn CR, Eubanks TM, Pyne T, Birkinshaw M, Matsakis DN (1997) Quasar proper motions and low-frequency gravitational waves. Astrophys J 485:87CrossRefGoogle Scholar
  27. Hall JL, Hänsch TW (2005) History of optical comb development. In: Ye J, Cundiff ST (eds) Femtosecond optical frequency comb: principle, operation, and applications. Springer Science and Business Media, pp 1–11Google Scholar
  28. Harada W, Fukushima T (2003) Harmonic decomposition of time ephemeris TE405. Astron J 126:2557CrossRefGoogle Scholar
  29. Hirayama T, Kinoshita H, Fujimoto M-K, Fukushima T (1987) Analytical expression of TDBTDT 0. In: Proc of the IAG Symposia. IUGG General Assembly, Vancouver, vol 1, p 91Google Scholar
  30. IAU (2001) IAU Inf. Bull, No 88, 29 (erratum No 89, 4, 2002)Google Scholar
  31. IAU (2006) Resolutions of the 26th General Assembly, Prague. http://www.iau.orgGoogle Scholar
  32. Iorio L (2005) The new earth gravity models and the measurement of the Lense-Thirring effect. In: Môrio Novello, Santiago Perez Bergliaffa, Remo Ruffini (eds) The Tenth Marcel Grossmann Meeting. Proceedings of the MG10 Meeting held at Brazilian Center for Research in Physics (CBPF), Rio de Janeiro, Brazil, 20–26 July 2003. World Scientific Publishing, Singapore, p 1011Google Scholar
  33. Irwin AW, Fukushima T (1999) A numerical time ephemeris of the Earth. Astron Astrophys 348:642Google Scholar
  34. Klioner SA (1991) General Relativistic Model of VLBI Observables, In: Carter WE (ed) Proceedings of AGU Chapman conference on geodetic VLBI: monitoring global change. NOAA Technical Report NOS 137 NGS 49, American Geophysical Union, Washington DC, p 188Google Scholar
  35. Klioner S (1996) Angular velocity of rotation of extended bodies in general relativity. In: Ferraz-Mello S, Morando B, Arlot J-E (eds) Dynamics, ephemerides, and astrometry of the solar system Proceedings of the 172nd Symposium of the IAU. Kluwer, Dordrecht, p 309Google Scholar
  36. Klioner SA, Soffel M, Xu Ch, Wu X (2001) Earth’s rotation in the framework of general relativity: rigid multipole moments. In: Capitaine N (ed) Proc of Les Journées 2001, Systèmes de référence spatio-temporels. Paris Observatory, Paris, p 232Google Scholar
  37. Komar A (1959) Covariant conservation laws in general relativity. Phys Rev 113:934CrossRefGoogle Scholar
  38. Kopeikin SM (1991) Relativistic Manifestations of gravitational fields in gravimetry and geodesy. Manuscripta Geodaetica 16:301Google Scholar
  39. Kopeikin S, Schäfer G, Polnarev A, Vlasov I (2006) The orbital motion of Sun and a new test of general relativity using radio links with the Cassini spacecraft. Class Quant Gravity. (in print). gr-qc/0604060Google Scholar
  40. Kouba J (2004) Improved relativistic transformations in GPS. GPS Solut 8:170CrossRefGoogle Scholar
  41. Lebach DE et al. (1995) Measurement of the Solar Gravitational Deflection of Radio waves using very-long-baseline interferometry. Phys Rev Lett 75:1439CrossRefGoogle Scholar
  42. Lemonde P et al (2001) In: Luiten AN (ed) Frequency measurement and control. Springer, Berlin, p 131Google Scholar
  43. McCarthy DD, Petit G (2004) IERS Conventions (2003), IERS Technical Note No 32, BKG, Frankfurt. electronic version http://www. iers.org/iers/products/conv/Google Scholar
  44. Lense J, Thirring H (1918) Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys Z 19:156; Translated and discussed by Mashhoon B, Hehl F, Theiss D (1984) On the gravitational effects of rotating Masses: The Thirring–Lense papers. General Relat Gravitat 16(8):711Google Scholar
  45. Moyer T (1981) Transformation from proper time on earth to coordinate time in solar system barycentric space–time frame of reference. Celest Mech 23:33, 57Google Scholar
  46. Müller J (1991) Analyse von Lasermessungen zum Mond im Rahmen eine Post-Newtonschen Theorie. PhD thesis, Veröffentlichung der Deutschen Geodätischen Kommission, Reihe C, Nr.383, MünchenGoogle Scholar
  47. Müller J (2000) FESG/TUM, report about the LLR activities. In: Pearlman M, Taggart L (eds) ILRS annual report 1999, p 204Google Scholar
  48. Müller J (2001) FESG/TUM, Report about the LLR Activities. In: Pearlman M, Torrence M, Taggart L (eds) ILRS annual report 2000, pp 7-35/36Google Scholar
  49. Müller J, Nordtvedt K (1998) Lunar laser ranging and the equivalence principle signal. Phys Rev D 58:062001CrossRefGoogle Scholar
  50. Müller J, Nordtvedt K, Vokrouhlický D (1996) Improved constraint on the α1 PPN parameter from lunar motion. Physical Review D 54:R5927CrossRefGoogle Scholar
  51. Müller J, Tesmer V (2002) Investigation of Tidal Effects in Lunar Laser Ranging. J Geodesy 76:232Google Scholar
  52. Müller J, Williams JG, Turyshev SG, Shelus P (2006a) Potential capabilities of lunar laser ranging for geodesy and relativity, In: Tregoning P, Rizos C (eds) Dynamic Planet. IAG Symposia 130. Springer, p 903Google Scholar
  53. Müller J, Williams JG, Turyshev SG (2006b) Lunar Laser Ranging Contributions to Relativity and Geodesy. In: Dittus H, Lämmerzahl C, Turyshev S (eds) Proceedings of the Conference on Lasers, Clocks, and Drag-free, ZARM, Bremen, 2005. Springer, Lecture Notes in Physics, 357Google Scholar
  54. Müller J, Biskupek L, Oberst J, Schreiber U (2007) Contribution of lunar laser ranging to realise geodetic reference systems. In: Proceedings of the GRF2006 meeting, Munich, 9–13 October 2006 (in review)Google Scholar
  55. Petit G (2003) The new IAU’2000 conventions for coordinate times and time transformations. In: Capitaine N (ed) Proc of Les Journées 2001, Systèmes de référence spatio-temporels. Paris Observatory, Paris, p 163Google Scholar
  56. Ries JC, Huang C, Watkins MM, Tapley BD (1991) Orbit determination in the relativistic geocentric reference frame. J Astronaut Sci 39(2):173Google Scholar
  57. Ries JC, Eanes RJ, Tapley BD (2003) Lense–Thirring precession determination from laser ranging to artificial satellites. In: Ruffini R, Sigismondi C (eds) Nonlinear Gravitodynamics. The Lense-Thirring Effect. World Scientific, Singapore, p 201Google Scholar
  58. Robertson DS, Carter WE, Dillinger WH (1991) New measurement of solar gravitational deflection of radio signals using VLBI. Nature 349:768CrossRefGoogle Scholar
  59. Rothacher M, private communication 2006Google Scholar
  60. Seeber G (2003) Satellite Geodesy, de Gruyter, 2nd edn. Berlin/New YorkGoogle Scholar
  61. Seielstad GA, Sramek RA, Weiler KW (1970) Measurement of the deflection of 9.602-GHz radiation from 3C279 in the solar gravitational field. Phys Rev Lett 24:1373CrossRefGoogle Scholar
  62. Soffel M, Herold H, Ruder H, Schneider M (1988) Relativistic theory of gravimetric measurements and definition of the geoid. Manuscripta Geodaetica 13:143Google Scholar
  63. Soffel M, Müller J, Wu X, Xu C (1991) Astron J 101:2306CrossRefGoogle Scholar
  64. Soffel M, Klioner SA (2004) Relativity in the problems of Earth rotation and astronomical reference systems: status and prospects. Fundamental astronomy: new concepts and models for high accuracy observations. In: Capitaine N (ed) Proc. of Les Journées 2004, Systèmes de référence spatio-temporels. Paris Observatory, Paris, p 191Google Scholar
  65. Soffel M, Klioner SA, Petit G et al (2003) The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: explanatory supplement. Astron J 126:2687CrossRefGoogle Scholar
  66. Standish EM (1998a) JPL planetary and lunar ephemerides, DE405/LE405 (Interoffice Memo. 312F-98-048) (JPL, Pasadena)Google Scholar
  67. Standish EM (1998b) Time scales in the JPL and CfA ephemerides. Astron Astrophys 336:381Google Scholar
  68. Udem Th, Holzwarth R, Hänsch TW (2002) Nature 416:233CrossRefGoogle Scholar
  69. Weinberg S (1972) Gravitation and cosmology. Wiley, New YorkGoogle Scholar
  70. Weyers S, Hübner U, Schröder R, Tamm C, Bauch A (2001) Metrologia 38:343CrossRefGoogle Scholar
  71. Will CM (1993) Theory and experiment in gravitational physics, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  72. Williams JG, Newhall XX, Dickey JO (1996) Relativity parameters determined from lunar laser ranging. Phys Rev D 53:6730CrossRefGoogle Scholar
  73. Williams JG, Turyshev SG, Boggs DH (2004a) Progress in lunar laser ranging tests of relativistic gravity. Phys Rev Lett 93:261101CrossRefGoogle Scholar
  74. Williams JG, Turyshev SG, Murphy Jr TW (2004b) Improving LLR Tests of gravitational theory. (Fundamental physics meeting, Oxnard, CA, April 2003). Int J Mod Phy D 13:567CrossRefGoogle Scholar
  75. Williams, J.G., Turyshev, S.G. and Boggs, D. H. (2005) Lunar laser ranging tests of the equivalence principle with the Earth and Moon. In: Laemmerzahl C, Everitt CWF, Ruffini R (eds) proceedings of Testing the equivalence principle on ground and in space. Pescara, Italy, September 20–23, 2004. Springer, Heidelberg Lecture Notes in PhysicsGoogle Scholar
  76. Xu C, Wu X, Soffel M (2001) General-relativistic theory of elastic deformable astronomical bodies. Phys Rev D 63:043002 (Erratum: Phys Rev D 63:109901)Google Scholar
  77. Xu C, Wu X, Soffel M, Klioner S (2003) General-relativistic perturbation equations for the dynamics of elastic deformable astronomical bodies expanded in terms of generalized spherical harmonics. Phys Rev D 68:064009CrossRefGoogle Scholar
  78. Xu C, Wu X, Soffel M (2005) General-relativistic perturbation equations for the dynamics of elastic deformable astronomical bodies expanded in terms of generalized spherical harmonics. Phys Rev D 71:024030CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jürgen Müller
    • 1
    Email author
  • Michael Soffel
    • 2
  • Sergei A. Klioner
    • 2
  1. 1.Institut für Erdmessung (IfE)Leibniz Universität Hannover (University of Hannover)HannoverGermany
  2. 2.Institut für Planetare Geodäsie, Lohrmann-ObservatoriumDresden Technical UniversityDresdenGermany

Personalised recommendations