Advertisement

Journal of Geodesy

, Volume 81, Issue 9, pp 629–631 | Cite as

Comments on Xu et al. (2006) Variance component estimation in linear inverse ill-posed models, J Geod 80(1):69–81

  • K. R. KochEmail author
  • J. Kusche
Comment

Keywords

Regularization Parameter GOCE Variance Component Estimation High Order Harmonic Little Square Collocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gambis D, Biancale R, Lemoine J-M, Marty J-C, Loyer S, Soudarin L, Carlucci T, Capitaine N, Berio P, Coulot D, Exertier P, Charlot P, Altamini Z (2006) Global combination from space geodetic techniques. In: Brzezinski A, Capitaine N, Kolaczek B (eds.). Proceedings of the Journees 2005 Systemes de Reference Spatio- Temporeles. Space Research Centre PAS, WarsawGoogle Scholar
  2. Koch KR, Kusche J (2002) Regularization of geopotential determination from satellite data by variance components. J Geod 76:259–268CrossRefGoogle Scholar
  3. Kusche J (2002) Inverse problems in gravity field determination from SST- and SGG satellite missions (in German) Deutsche Geodätische Kommission, series C, no 548, MunichGoogle Scholar
  4. Koch KR (2007) Introduction to Bayesian statistics, 2nd ed. Springer, BerlinGoogle Scholar
  5. Lerch FJ (1991) Optimum data weighting and error calibration for estimation of gravitational parameters. Bull Géod 65:44–52CrossRefGoogle Scholar
  6. Louis AK (1989) Inverse and Ill-posed Problems (in German). Teubner, StuttgartGoogle Scholar
  7. Mayer-Gürr T, Ilk KH, Eicker A, Feuchtinger M (2005) ITG-CHAMP01: A CHAMP gravity field model from short kinematical arcs of a one-year observation period. J Geod 78:462–480CrossRefGoogle Scholar
  8. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes in C: the art of scientific computing. Cambridge University Press, CambridgeGoogle Scholar
  9. Schwintzer P (1990) Sensitivity analysis in least squares gravity modelling by means of redundancy decomposition of stochastic prior information. Internal Report, Deutsches Geodätisches Forschungsinstitut, MünchenGoogle Scholar
  10. O’Sullivan F (1986) A statistical perspective on ill-posed inverse problems. Stat Sci 1:502–527Google Scholar
  11. Schmidt M, Han S-C, Kusche J, Sanchez L, Shum CK (2006) Regional high-resolution spatiotemporal gravity modeling from GRACE data using spherical wavelets. eophys Res Lett, 33, L08403, doi:10.1029/2005GL025509Google Scholar
  12. Thalhammer M (1994) The geographical truncation error in satellite gradiometer measurements. Manuscr Geod 19(1):45–54Google Scholar
  13. Xu P, Shen Y, Fukuda Y, Liu Y (2006) Variance component estimation in linear inverse ill-posed models. J Geod 80(1):69–81CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute for Theoretical GeodesyUniversity of BonnBonnGermany
  2. 2.Department 1: Geodesy and Remote SensingGeoForschungsZentrum PotsdamPotsdamGermany

Personalised recommendations