Advertisement

Journal of Geodesy

, Volume 81, Issue 12, pp 781–798 | Cite as

Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas

  • Ralf Schmid
  • Peter Steigenberger
  • Gerd Gendt
  • Maorong Ge
  • Markus Rothacher
Original Article

Abstract

The development and numerical values of the new absolute phase-center correction model for GPS receiver and satellite antennas, as adopted by the International GNSS (global navigation satellite systems) Service, are presented. Fixing absolute receiver antenna phase-center corrections to robot-based calibrations, the GeoForschungsZentrum Potsdam (GFZ) and the Technische Universität München reprocessed more than 10 years of GPS data in order to generate a consistent set of nadir-dependent phase-center variations (PCVs) and offsets in the z-direction pointing toward the Earth for all GPS satellites in orbit during that period. The agreement between the two solutions estimated by independent software packages is better than 1 mm for the PCVs and about 4 cm for the z-offsets. In addition, the long time-series facilitates the study of correlations of the satellite antenna corrections with several other parameters such as the global terrestrial scale or the orientation of the orbital planes with respect to the Sun. Finally, completely reprocessed GPS solutions using different phase-center correction models demonstrate the benefits from switching from relative to absolute antenna phase-center corrections. For example, tropospheric zenith delay biases between GPS and very long baseline interferometry (VLBI), as well as the drift of the terrestrial scale, are reduced and the GPS orbit consistency is improved.

Keywords

GPS Satellite antenna Receiver antenna Absolute phase-center corrections GPS data reprocessing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: A new release of the International Terrestrial Reference Frame for Earth science applications. J Geophys Res 107(B10): 2214. doi: 10.1029/2001JB000561CrossRefGoogle Scholar
  2. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth orientation parameters. J Geophys Res (submitted)Google Scholar
  3. Bar-Sever Y (1995) A new model for GPS yaw attitude. In: Gendt G, Dick G (eds) Proc 1995 IGS Workshop, Potsdam, pp 128–140Google Scholar
  4. Berg H (1948) Allgemeine Meteorologie—Einführung in die Physik der Atmosphäre. Ferdinand Dümmlers Verlag, BonnGoogle Scholar
  5. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M (1994) Extended orbit modeling techniques at the CODE Processing Center of the International GPS Service (IGS): theory and initial results. Manuscr Geod 19(6): 367–386Google Scholar
  6. Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111(B2):B02406. doi: 10.1029/2005JB003629CrossRefGoogle Scholar
  7. Braun J, Stephens B, Ruud O, Meertens C (1997) The effect of antenna covers on GPS baseline solutions. UNAVCO report, University NAVSTAR Consortium, Boulder (available at http://facility. unavco. org/ science_tech/ dev_test/ publications/ dome_report/ domeX5Freport-1.html)Google Scholar
  8. Czopek FM, Shollenberger S (1993) Description and performance of the GPS Block I and II L-Band antenna and link budget. In: Proc ION-GPS93, The Institute of Navigation, Salt Lake City, pp 37–43Google Scholar
  9. Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, BernGoogle Scholar
  10. Dow JM, Neilan RE, Gendt G (2005) The International GPS Service (IGS): Celebrating the 10th anniversary and looking to the next decade. Adv Space Res 36(3):320–326. doi: 10.1016/j.asr.2005.05.125CrossRefGoogle Scholar
  11. Ferland R (2003) IGS00(v2) final. IGSMAIL-4666. IGS Central Bureau, PasadenaGoogle Scholar
  12. Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32(23):L23311. doi: 10.1029/2005GL024342CrossRefGoogle Scholar
  13. Ge M, Gendt G (2005a) Estimation and validation of IGS absolute antenna phase center variations. In: Meindl M (ed) Proc 2004 IGS Workshop and Symposium, BernGoogle Scholar
  14. Ge M, Gendt G, Dick G, Zhang FP, Reigber C (2005b) Impact of GPS satellite antenna offsets on scale changes in global network solutions. Geophys Res Lett 32(6):L06310. doi: 10.1029/2004GL022224CrossRefGoogle Scholar
  15. Ge M, Gendt G, Dick G, Zhang FP (2005c) Improving carrier-phase ambiguity resolution in global GPS network solutions. J Geod 79(1–3):103–110. doi: 10.1007/s00190-005-0447-0CrossRefGoogle Scholar
  16. Gendt G (2006) IGS switch to absolute antenna model and ITRF2005 IGSMAIL-5438. IGS Central Bureau, PasadenaGoogle Scholar
  17. Gendt G, Dick G, Söhne W (1999) GFZ Analysis Center of IGS—Annual Report 1998. In: Gowey K, Neilan R, Moore A (eds) 1998 IGS Technical Reports. IGS Central Bureau, Pasadena, pp 79–87Google Scholar
  18. Görres B, Campbell J, Becker M, Siemes M (2006) Absolute calibration of GPS antennas: laboratory results and comparison with field and robot techniques. GPS Sol 10(2):136–145. doi: 10.1007/s10291-005-0015-3CrossRefGoogle Scholar
  19. Haines B, Bar-Sever Y, Bertiger W, Desai S, Willis P (2004) One-centimeter orbit determination for Jason-1: new GPS-based strategies. Mar Geod 27(1–2):299–318. doi: 10.1080/01490410490465300CrossRefGoogle Scholar
  20. Hefty J, Rothacher M, Springer T, Weber R, Beutler G (2000) Analysis of the first year of Earth rotation parameters with a sub-daily resolution gained at the CODE processing center of the IGS. J Geod 74(6): 479–487. doi: 10.1007/s001900000108CrossRefGoogle Scholar
  21. Hugentobler U, Ineichen D, Beutler G (2003) GPS satellites: radiation pressure, attitude and resonance. Adv Space Res 31(8):1917–1926. doi: 10.1016/S0273-1177(03)00174-1CrossRefGoogle Scholar
  22. Kouba J (2003) A guide to using International GPS Service (IGS) products. IGS Central Bureau, Pasadena (available at http://igscb. jpl. nasa. gov/ igscb/ resource/ pubs/ GuidetoUsingIGSProducts.pdf)Google Scholar
  23. Luzum BJ, Ray JR, Carter MS, Josties FJ (2001) Recent improvements to IERS Bulletin A combination and prediction. GPS Sol 4(3):34–40. doi:10.1007/PL00012853CrossRefGoogle Scholar
  24. Mader GL (1999) GPS antenna calibration at the National Geodetic Survey. GPS Sol 3(1):50–58. doi: 10.1007/PL00012780CrossRefGoogle Scholar
  25. Mader GL, Czopek FM (2002) The Block IIA satellite—Calibrating antenna phase centers. GPS World 13(5):40–46Google Scholar
  26. Marquis W, Reigh D (2005) On-orbit performance of the improved GPS Block IIR antenna panel. In: Proc ION-GNSS05, Long Beach, pp 2418–2426Google Scholar
  27. Menge F (2003) Zur Kalibrierung der Phasenzentrumsvariationen von GPS-Antennen für die hochpräzise Positionsbestimmung. Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover, vol 247, pp 1–198Google Scholar
  28. Menge F, Seeber G, Voelksen C, Wuebbena G, Schmitz M (1998) Results of absolute field calibration of GPS antenna PCV. In: Proc ION-GPS98, Nashville, pp 31–38Google Scholar
  29. Montenbruck O, Gill E (2000) Satellite orbits: models, methods, applications. Springer, BerlinGoogle Scholar
  30. Navstar GPS Joint Program Office (2004) Navstar GPS space segment/navigation user interfaces (IS-GPS-200, Revision D). Interface specification, El Segundo (available at http://gps. afspc. af. mil/ gpsoc/ gps_documentation.htm)Google Scholar
  31. Niell A (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2):3227–3246. doi: 10.1029/95JB03048CrossRefGoogle Scholar
  32. Niell A (2000) Improved atmospheric mapping functions for VLBI and GPS. Earth Planets Space 52(10):699–702Google Scholar
  33. Ray J, Altamimi Z (2005) Evaluation of co-location ties relating the VLBI and GPS reference frames. J Geod 79(4–5):189–195. doi: 10.1007/s00190-005-0456-zCrossRefGoogle Scholar
  34. Ray J, Dong D, Altamimi Z (2004) IGS reference frames: status and future improvements. GPS Sol 8(4):251–266. doi: 10.1007/s10291-004-0110-xCrossRefGoogle Scholar
  35. Ray J, Crump D, Chin M (2007) New global positioning system reference station in Brazil. GPS Sol 11(1):1–10. doi: 10.1007/s10291-006-0032-xCrossRefGoogle Scholar
  36. Rothacher M (2001) Comparison of absolute and relative antenna phase center variations. GPS Sol 4(4):55–60. doi: 10.1007/PL00012867CrossRefGoogle Scholar
  37. Rothacher M, Mader G (2003). Receiver and satellite antenna phase center offsets and variations. In: Tetreault P, Neilan R, Gowey K (eds) Proc 2002 IGS Network. Data and Analysis Centre Workshop, Ottawa, pp 141–152Google Scholar
  38. Saastamoinen J (1973) Contributions to the theory of atmospheric refraction. Bull Géod 107: 13–34. doi: 10.1007/BF02522083CrossRefGoogle Scholar
  39. Saha S, Nadiga S, Thiaw C, Wang J, Wang W, Zhang Q, Van den Dool HM, Pan H-L, Moorthi S, Behringer D, Stokes D, Pena M, Lord S, White G, Ebisuzaki W, Peng P, Xie P (2006) The NCEP climate forecast system. J Clim 19(15):3483–3517. doi: 10.1175/JCLI3812.1CrossRefGoogle Scholar
  40. Schmid R (2006) igs05_1390.atx—New release of the absolute IGS antenna correction file. IGSMAIL-5400, IGS Central Bureau, PasadenaGoogle Scholar
  41. Schmid R, Rothacher M (2003) Estimation of elevation-dependent satellite antenna phase center variations of GPS satellites. J Geod 77(7–8): 440–446. doi: 10.1007/s00190-003-0339-0CrossRefGoogle Scholar
  42. Schmid R, Mader G, Herring T (2005a) From relative to absolute antenna phase center corrections. In: Meindl M (ed) Proc 2004 IGS Workshop and Symposium, Bern, pp 209–219Google Scholar
  43. Schmid R, Rothacher M, Thaller D, Steigenberger P (2005b) Absolute phase center corrections of satellite and receiver antennas: impact on global GPS solutions and estimation of azimuthal phase center variations of the satellite antenna. GPS Sol 9(4):283–293. doi: 10.1007/s10291-005-0134-xCrossRefGoogle Scholar
  44. Schöne T (2004). TIGA—Tide gauge benchmark monitoring pilot project. In: Gowey K, Neilan R, Moore A (eds) IGS 2001-2002 Technical Reports. IGS Central Bureau, Pasadena, pp 225–230Google Scholar
  45. Schupler BR, Allshouse RL, Clark TA (1994) Signal characteristics of GPS user antennas. J Inst Navigation 41: 277–295Google Scholar
  46. Springer TA (2000a) Modeling and validating orbits and clocks using the global positioning system. Geodätisch-geophysikalische Arbeiten in der Schweiz, 60, Swiss Geodetic CommissionGoogle Scholar
  47. Springer TA (2000b) Common interests of the IGS and the IVS. In: Vandenberg NR, Baver KD (eds) Proc 2000 IVS General Meeting, Kötzting, pp 296–305Google Scholar
  48. Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111(B5): B05402. doi: 10.1029/2005JB003747CrossRefGoogle Scholar
  49. Steigenberger P, Romero I, Fang P (2007) Reprocessing issues, standardization, new models. In: Proc 2006 IGS Workshop, Darmstadt (in press)Google Scholar
  50. Tesmer V, Kutterer H, Drewes H (2004) Simultaneous estimation of a TRF, the EOP and a CRF. In: Vandenberg NR, Baver KD (eds) Proc 2004 IVS General Meeting, Ottawa, pp 311–314Google Scholar
  51. Thaller D, Dill R, Krügel M, Steigenberger P, Rothacher M, Tesmer V (2006) CONT02 analysis and combination of long EOP series. In: Flury J, Rummel R, Reigber Ch, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the Earth system from space. Springer, Berlin, pp 389–411CrossRefGoogle Scholar
  52. Thomas CC, MacMillan DS (2003) CORE operation center report. In: Vandenberg NR, Baver KD (eds) IVS 2002 Annual Report, NASA/TP-2003-211619, Goddard Space Flight Center, GreenbeltGoogle Scholar
  53. Zhang FP, Gendt G, Wuensch J, Ge M, van Dam T (2005) Impact of atmospheric pressure loading on the stability of reference frame and vertical motion rate derived by GPS. Geophys Res Abstr 7, 01077Google Scholar
  54. Zhu SY, Massmann F-H, Yu Y, Reigber C (2003) Satellite antenna phase center offsets and scale errors in GPS solutions. J Geod 76:668–672. doi: 10.1007/s00190-002-0294-1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Ralf Schmid
    • 1
  • Peter Steigenberger
    • 2
    • 3
  • Gerd Gendt
    • 4
  • Maorong Ge
    • 4
  • Markus Rothacher
    • 4
  1. 1.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMünchenGermany
  2. 2.Forschungseinrichtung SatellitengeodäsieTechnische Universität MünchenMünchenGermany
  3. 3.GeoForschungsZentrum PotsdamPotsdamGermany
  4. 4.GeoForschungsZentrum PotsdamPotsdamGermany

Personalised recommendations