Journal of Geodesy

, Volume 81, Issue 6–8, pp 389–401 | Cite as

Using VLBI fringe-phase information from geodetic experiments for short-period ionospheric studies

  • Thomas Hobiger
  • Tetsuro Kondo
  • Yasuhiro Koyama
  • Kazuhiro Takashima
  • Harald Schuh
Original Article
  • 123 Downloads

Abstract

The usage of Very Long Baseline Interferometry (VLBI) fringe-phase information in geodetic VLBI is a new field of research, which can be used for the detection of short-period (i.e., several minutes) variations (scintillations) of the ionosphere. This paper presents a method for the extraction of such disturbances and discusses how dispersive influences can be separated from intra-scan delay variations. A proper functional and stochastic model for the separation of the different effects is presented and the algorithms are applied to real measurements. In an example, it is shown that a traveling ionospheric disturbance in Antarctica can be detected very precisely. A possible physical origin and the propagation properties of the disturbance are presented and the results are compared with GPS measurements. The benefit of this method for other applications is also discussed.

Keywords

VLBI Fringe phase Intra-scan variation Ionosphere Total electron content Traveling ionospheric disturbances Plasma patches 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarons J (1993) The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence. Space Sci Rev 63(3/4):209–243CrossRefGoogle Scholar
  2. Afraimovich EL, Kosogorov EA, Palamarchouk KS, Perevalova NP, Plotnikov AV (2000) The use of GPS arrays in detecting the ionospheric response during rocket launchings. Earth Planets Space 52(11):1061–1066Google Scholar
  3. Afraimovich EL, Perevalova NP, Voyeikov SV (2003) Traveling wave packets of total electron content disturbances as deduced from global GPS network data. J Atmos Solar-Terr Phys 65(11):1245–1262CrossRefGoogle Scholar
  4. Afraimovich EL, Astafieva EI, Voyeikov SV (2004) Isolated ionospheric disturbance as deduced from global GPS network. Ann Geophys 22(1):47–62. SRef:1432-0576/ag/2004-22-47CrossRefGoogle Scholar
  5. Bhattacharyya A, Rastogi RG (1991) Structure of ionospheric irregularities from amplitude and phase scintillation observations. Radio Sci 26:439–449Google Scholar
  6. Boehm J, Schuh H, Weber R (2002). Influence of tropospheric zenith delays obtained by GPS and VLBI on station heights. In: Drewes H, Dodson AH, Fortes LPS, Sanchez L, Sandoval P (eds). Vertical reference systems. IAG Symposia, vol 124. Springer, Berlin, pp. 107–112Google Scholar
  7. Budden KG (1985) The propagation of radio waves. Cambridge University Press, CambridgeGoogle Scholar
  8. Ducic V, Artru J, Lognonne P (2003) Ionospheric remote sensing of the Denali Earthquake Rayleigh surface waves. Geophys Res Lett 30(18):1951–1958. doi:10.1029/2003GL017812CrossRefGoogle Scholar
  9. Hakegard O (1995) A regional ionospheric model for real-time predictions of the total electron content in wide area differential satellite navigation systems. PhD Thesis, Norwegian Institute of Technology, NorwayGoogle Scholar
  10. Hargreaves JK (1992) The solar-terrestrial environment. Cambridge University Press, CambridgeGoogle Scholar
  11. Hawarey M (2006) Travelling ionospheric disturbance over California mid 2000. J Nonlinear Process Geophys 13(1). SRef-ID: 1607-7946/npg/2006-13-1Google Scholar
  12. Heki K, Ping J (2005) Directivity and apparent velocity of the coseismic ionospheric disturbances observed with a dense GPS array. Earth Planet Sci Lett 236(3–4):845–855. doi:10.1016/j.epsl.2005.06.010CrossRefGoogle Scholar
  13. Hobiger T (2006) VLBI as a tool to probe the ionosphere. PhD thesis, Vienna University of Technology, published under: Schriftenreihe der Studienrichtung Vermessung und Geoinformation, Technische Universitaet Wien, ISSN 1811-8380Google Scholar
  14. Hobiger T, Kondo T, Schuh H (2006) Very long baseline interferometry as a tool to probe the ionosphere. Radio Sci 41:RS1006. doi:10.1029/2005RS003297Google Scholar
  15. Hofmann-Wellenhof B, Lichtenegger H, Collins J (2001) Global positioning system—theory and practice, 5th edn. Springer, BerlinGoogle Scholar
  16. Hunsucker RD (1982) Atmospheric gravity waves generated in the high-latitude ionosphere: a review. Rev Geophys 20(2):293–315Google Scholar
  17. Jacobson AB, Erickson WC (1993) Observations of electron-density irregularities in the plasmasphere using the VLA radio-interferometer. Ann Geophys 11:869–873Google Scholar
  18. Kassim NE, Perley RA, Erickson WC, Dwarakanath KS (1993) Subarcminute resolution imaging of radiosources at 74 MHz with the very large array. Astron J 106:2218–2228CrossRefGoogle Scholar
  19. Koch KR (1997). Parameter estimation and hypothesis testing in linear models. Springer, BerlinGoogle Scholar
  20. Kondo T, Kimura M, Koyama Y, Osaki H (2004) Current status of software correlators developed at Kashima Space Research Center. In: International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings. NASA/CP-2004-212255, pp 186–190Google Scholar
  21. Koyama Y, Kondo T, Osaki H, Whitney AR, Dudevoir KA (2005) Rapid Turnaround EOP Measurements by VLBI over the Internet. In: Sanso F (ed) A window on the future of geodesy. Springer, Berlin, pp 119–124Google Scholar
  22. Ma T, Schunk RW (2001) The effects of multiple propagating plasma patches on the polar thermosphere. J Atmos Solar-Terr Phys 63(4):355–366. doi:10.1016/S1364-6826(00)00181-4CrossRefGoogle Scholar
  23. Maruyama T (1991) Observations of quasi-periodic scintillations and their possible relation to the dynamics of ES plasma blobs. Radio Sci 26:691–700Google Scholar
  24. Ogden RT (1997) Essential wavelets for statistical applications and data analysis. Birkhäuser, BostonGoogle Scholar
  25. Petrov L (2000) Instrumental errors of geodetic VLBI. In: Vandenberg NR, Baver KB (eds) International VLBI Service for Geodesy and Astrometry 2000 General Meeting Proceedings. NASA/CP-2000-209893Google Scholar
  26. Ray JR, Corey BE (1991) Current precision of VLBI multi-band delay observables. In: Proceedings AGU chapman conference on geodetic VLBI: monitoring global change, Washington DC, 22–26 April 1991Google Scholar
  27. Roberts DH, Klobuchar JA, Fougere PF, Hendrickson DH (1982a) A large-amplitude traveling ionospheric disturbance produced by the May 18, 1980, explosion of Mount St. Helens. J Geophys Res, 87:6291–6301Google Scholar
  28. Roberts DH, Rogers AEE, Allen BR, Bennett CL, Burke BF, Greenfield PE, Lawrence CR, Clark T (1982b) Radio interferometric detection of a traveling ionospheric disturbance excited by the explosion of Mount St. Helens. J Geophys Res 87:6302–6306CrossRefGoogle Scholar
  29. Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the global positioning system. PhD thesis, Bern UniversityGoogle Scholar
  30. Schmidt M (2001) Basis principles of wavelet analysis and applications in geodesy (in German). Post-doctoral thesis, Shaker, Aachen, GermanyGoogle Scholar
  31. Shilo NM, Essex EA, Breed AM (2000) Ionospheric scintillation study of the southern high latitude ionosphere. In: WARS’00—Workshop on the applications of radio science. National Committee for Radio Science, Australia, pp 154–159Google Scholar
  32. Space Environment Center, Boulder CO, National Oceanic and Atmospheric Administration, US Deptartment of Commerce (2006) http://www.sec.noaa.gov/index.htmlGoogle Scholar
  33. Sitnov MI, Guzdar PN, Swisdak M (2005) On the formation of a plasma bubble. Geophys Res Lett 32(16103). doi:10.1029/2005GL023585Google Scholar
  34. Sovers OJ, Fanselow JL, Jacobs CS (1998) Astrometry and geodesy with radio interferometry: experiments, models, results. Rev Mod Phys 70(4):1393–1454CrossRefGoogle Scholar
  35. Spilker JJ (1978) GPS signal structure and performance characteristics. J Navig 25(2):121–146Google Scholar
  36. Stollnitz EJ, DeRose TD, Salesin DH (1995) Wavelets for computer graphics: a primer, part 2. IEEE Comput Graph Appl 15(4):75–85CrossRefGoogle Scholar
  37. Takahashi Y, Hama S, Kondo T (1991) K-3 software system for VLBI and new correlation processing software for K-4 recording system. J Commun Res Lab 38(3):481–502Google Scholar
  38. Takahashi F, Kondo T, Takahashi Y, Koyama Y (2000). Very Long Baseline Interferometer, Ohmsha, JapanGoogle Scholar
  39. Thompson AR, Moran JM, Swenson GW (2001). Interferometry and synthesis in radio astronomy. Wiley, New YorkGoogle Scholar
  40. Tolman B, Harris RB, Gaussiran T, Munton D, Little J, Mach R, Nelsen S, Renfro B, Schlossberg D (2004) The GPS Toolkit—open source GPS software. In: Proceedings of the 17th international technical meeting of the satellite division of the institute of navigation, ION GNSS 2004, pp 2044–2053Google Scholar
  41. VLBA Calibrator list (2005) Version 15 December 2005. http://www.vlba.nrao.edu/astro/calib/vlbaCalib.txtGoogle Scholar
  42. Zensus JA, Diamond PJ, Napier PJ (eds) (1995) Very Long Baseline Interferometry and the VLBA, ASP Conference Series, vol. 82. Astronomical Society of the Pacific. San Francisco. ISBN 1-886733-02-3Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Thomas Hobiger
    • 1
  • Tetsuro Kondo
    • 1
  • Yasuhiro Koyama
    • 1
  • Kazuhiro Takashima
    • 2
  • Harald Schuh
    • 3
  1. 1.Kashima Space Research CenterNational Institute of Information and Communications Technology (NICT)KashimaJapan
  2. 2.VLBI groupGeographical Survey InstituteTsukubaJapan
  3. 3.Institute of Geodesy and GeophysicsVienna University of TechnologyViennaAustria

Personalised recommendations