Journal of Geodesy

, Volume 81, Issue 11, pp 703–712 | Cite as

Correcting superconducting gravity time-series using rainfall modelling at the Vienna and Membach stations and application to Earth tide analysis

  • Bruno MeurersEmail author
  • Michel Van Camp
  • Toon Petermans
Original Article


We demonstrate the possibility to improve the signal-to-noise ratio of superconducting gravity time-series by correcting for local hydrological effects. Short-term atmospheric events associated with heavy rain induce step-like gravity signals that deteriorate the frequency spectrum estimates. Based on 4D modeling constrained by high temporal resolution rain gauge data, rainfall admittances for the Vienna and Membach superconducting gravity stations are calculated. This allows routine correction for Newtonian rain water effects, which reduces the standard deviation of residuals after tidal parameter adjustment by 10%. It also improves the correction of steps of instrumental origin when they coincide with step-like water mass signals.


Gravity time-series Tidal analysis Rain water effect modeling Superconducting gravity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bower DR, Courtier N (1998) Precipitation effects on gravity measurements at the Canadian absolute gravity site. Phys Earth Planet Int 106:353–369CrossRefGoogle Scholar
  2. Crossley D, Jensen O, Hinderer J (1995) Effective barometric admittance and gravity residuals. Phys Earth Planet Int 90: 355–358Google Scholar
  3. Crossley DJ, Xu S, van Dam T (1998) Comprehensive analysis of 2 years of SG data from Table Mountain, Colorado. In: Ducarme B, Pâquet P (eds) Proc. 13th Int. Symp. Earth Tides, Brussels, July 22–25, 1997, pp 659–668Google Scholar
  4. Francis O, Van Camp M, van Dam T, Warnant R, Hendrickx M (2004) Indication of the uplift of the Ardenne in long term gravity variations in Membach (Belgium). Geophys J Int 158: 346–352CrossRefGoogle Scholar
  5. Götze HJ, Lahmeyer B (1988) Application of three dimensional interactive modeling in gravity and magnetics. Geophysics 53:1096–1108CrossRefGoogle Scholar
  6. Harnisch M, Harnisch G (2002) Seasonal variations of hydrological influences on gravity measurements at Wettzell. B Inf Marèes Terr 137:10849–10861Google Scholar
  7. Harnisch M, Harnisch G (2006) Hydrological influences in long gravimetric data series. J Geodynamics 41:276–287CrossRefGoogle Scholar
  8. Imanishi Y (1999) Present status of SG T011 at Matsushiro, Japan. In: Ducarme B, Barthélemy J (eds) Proceedings of Workshop: “High Precision Gravity Measurements with Application to Geodynamics and Second GGP Workshop”, Luxembourg, Cah Cent Eur Géodyn et de Séismol 17:97–102Google Scholar
  9. Kroner C (2002) Zeitliche Variationen des Erdschwerefeldes und ihre Beobachtung mit einem supraleitenden Gravimeter im Geodynamischen Observatorium Moxa, Habilitationsschrift, Chemisch-Geowissenschaftliche Fakultät, FSU Jena, 149 ppGoogle Scholar
  10. Meurers B (2000) Gravitational effects of atmospheric processes in SG gravity data. In: Ducarme B, Barthélemy J (eds) Proceedings of Workshop: “High Precision Gravity Measurements with Application to Geodynamics and Second GGP Workshop”, Luxembourg, 1999, Cah Cent Eur Géodyn et de Séismol 17: 57–65Google Scholar
  11. Müller T, Zürn W (1983) Observation of gravity changes during the passage of cold fronts. J Geophys 53: 155–162Google Scholar
  12. Renka RJ (1996) ALGORITHM 751. TRIPACK: Constrained two-dimensional Delaunay Triangulation Package. ACM Trans Math Software 22(1): 1–8CrossRefGoogle Scholar
  13. Simon D (2002) Modelling of the field of gravity variations induced by the seasonal air mass warming during 1998–2000. B Inf Marées Terr 136:10821–10836Google Scholar
  14. Van Camp M, Vauterin P (2005) Tsoft: graphical and interactive software for the analysis of time series and Earth tides. Comput Geosci 31(5):631–640CrossRefGoogle Scholar
  15. Van Camp M, Francis O (2006) Is the instrumental drift of superconducting gravimeters a linear or exponential function of time? J Geodesy: doi 10.1007/s00190-006-0110-4Google Scholar
  16. Van Camp M, Vanclooster M, Crommen O, Petermans T, Verbeeck K, Meurers B, van Dam T, Dassargues A (2006) Hydrogeological investigations at the Membach station, Belgium, and application to correct long periodic gravity variations. J Geophys Res 111: B10403 doi:10.1029/2006JB004405CrossRefGoogle Scholar
  17. Warburton RJ, Goodkind JM (1977) The influence of barometric pressure variations on gravity. Geophys J R astr Soc 48: 281–292Google Scholar
  18. Wenzel HG (1996) The nanogal software: Earth tide data processing package ETERNA 3.30. B Inf Marées Terr 124:9425–9439Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Bruno Meurers
    • 1
    Email author
  • Michel Van Camp
    • 2
  • Toon Petermans
    • 2
  1. 1.Institute of Meteorology and GeophysicsUniversity ViennaWienAustria
  2. 2.Royal Observatory of BelgiumBruxellesBelgium

Personalised recommendations