Journal of Geodesy

, Volume 81, Issue 10, pp 679–683 | Cite as

Short Note: A global model of pressure and temperature for geodetic applications

Original Article

Abstract

The empirical model GPT (Global Pressure and Temperature), which is based on spherical harmonics up to degree and order nine, provides pressure and temperature at any site in the vicinity of the Earth’s surface. It can be used for geodetic applications such as the determination of a priori hydrostatic zenith delays, reference pressure values for atmospheric loading, or thermal deformation of Very Long Baseline Interferometry (VLBI) radio telescopes. Input parameters of GPT are the station coordinates and the day of the year, thus also allowing one to model the annual variations of the parameters. As an improvement compared with previous models, it reproduces the large pressure anomaly over Antarctica, which can cause station height errors in the analysis of space-geodetic data of up to 1 cm if not considered properly in troposphere modelling. First tests at selected geodetic observing stations show that the pressure biases considerably decrease when using GPT instead of the very simple approaches applied to various Global Navigation Satellite Systems (GNSS) software packages so far. GPT also provides an appropriate model for the annual variability of global temperature.

Keywords

GNSS VLBI Neutral atmosphere delays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. Berg H (1948) Allgemeine Meteorologie. Dümmler, BonnGoogle Scholar
  2. Boehm J, Werl B, Schuh H (2006a) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111:B02406 . doi: 10.1029/2005JB003629CrossRefGoogle Scholar
  3. Boehm J, Niell AE, Tregoning P, Schuh H (2006b) The Global Mapping Function (GMF): A new empirical mapping function based on data from numerical weather model data. Geophys Res Lett 33:L07304 doi: 10.1029/2005GL025546CrossRefGoogle Scholar
  4. Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman, San FranciscoGoogle Scholar
  5. Hopfield HS (1969) Two-quartic tropospheric refractivity profile for correcting satellite data. J Geophys Res 74:4487–4499CrossRefGoogle Scholar
  6. Hugentobler U, Dach R, Fridez P, Meindl M (eds) (2006) Bernese GPS Software Version 5.0. Astronomical Institute, University of BerneGoogle Scholar
  7. King RW, Bock Y (2006) Documentation for the GAMIT GPS processing software Release 10.2. MIT, CambridgeGoogle Scholar
  8. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA/TP-1998-20681, NASA, GreenbeltGoogle Scholar
  9. MacMillan DS, Ma C (1994) Evaluation of very long baseline interferometry atmospheric modeling improvements. J Geophys Res 99(B1):637–651CrossRefGoogle Scholar
  10. Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2):3227–3246CrossRefGoogle Scholar
  11. Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The use of artificial satellites for geodesy, American Geophysics Union. Geophys Monogr Ser 15:274–251Google Scholar
  12. Tregoning P, Herring TA (2006) Impact of a priori hydrostatic zenith delay errors on GPS estimates of station heights and zenith total delays. Geophys Res Lett 33:L23303 doi:10.1029/2006GL027706CrossRefGoogle Scholar
  13. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012, doi:10.1256/qj.04.176Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of Geodesy and GeophysicsVienna University of TechnologyViennaAustria

Personalised recommendations