Journal of Geodesy

, Volume 81, Issue 6–8, pp 515–527 | Cite as

Tropospheric parameters: combination studies based on homogeneous VLBI and GPS data

  • Manuela KrügelEmail author
  • Daniela Thaller
  • Volker Tesmer
  • Markus Rothacher
  • Detlef Angermann
  • Ralf Schmid
Original Article


The combination of tropospheric parameters derived from different space-geodetic techniques has not been of large interest in geodesy so far. However, due to the high correlation between station coordinates and tropospheric parameters, the latter should not be neglected in combinations. This paper deals with the comparison and combination of tropospheric parameters derived from global positioning system (GPS) and very long baseline interferometry (VLBI) observations stemming from a 15-day campaign of continuous VLBI observations in 2002 (CONT02). The observation data of both techniques were processed homogeneously to avoid systematic differences between the solutions. We compared the tropospheric estimates of GPS and VLBI at eight co-location sites and found a very good agreement in the temporal behavior of the tropospheric zenith path delays (ZPD), reflected by correlation factors up to 0.98. Following this, a combination of the tropospheric parameters was performed. We demonstrate that the combination of tropospheric parameters leads to a stabilization of combined station networks. This becomes visible in the improvement of the repeatabilities of the station height components. Furthermore, the potential use of independent data from water vapor radiometers (WVRs) to validate space-technique-derived tropospheric parameters was investigated. Correlation coefficients of 0.95 or better were estimated between the tropospheric parameters of WVR and GPS or VLBI. Additionally, the utility of the tropospheric parameters for validation of local tie vectors was investigated. Both tropospheric zenith delays and tropospheric gradients were found to be very suitable to validate the height component and the horizontal components of the local tie, respectively.


GPS VLBI Water vapor radiometers CONT02 Rigorous combination Co-location Local ties Tropospheric parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the international terrestrial reference frame for earth science applications. J Geophys Res 107(B19):2214 . DOI 10.1029/2001JB000561CrossRefGoogle Scholar
  2. Altamimi Z, Boucher C, Willis P (2005) Terrestrial reference frame requirements within GGOS perspective. J Geodyn 40(4–5):363–374. DOI 10.1016/j.jog.2005.06.002CrossRefGoogle Scholar
  3. Berg H (1984) Allgemeine Meteorologie. Dümmler-Verlag, BonnGoogle Scholar
  4. Boucher C, Altamimi Z, Sillard P, Feissel-Vernier M (2004) The ITRF2000. IERS ITRS Centre, IERS Technical Note 31, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  5. Braun J, Stephans B, Ruud O, Meertens C (1997) The effect of antenna covers on GPS baseline solutions. University NAVSTAR Consortium, Boulder. Available at /facility/science_tech/dev_test/publications/dome_report/domeX5Freport-1.htmlGoogle Scholar
  6. Elgered G (1993) Tropospheric radio path delay from ground-based microwave radiometry. In: Janssen M (ed) Atmospheric remote sensing by microwave radiometry. Wiley, New York, pp 215–258Google Scholar
  7. Elgered G, Haas R (2003) The geodetic VLBI network station at the Onsala Space Observatory—activities during 2002. In: Schwegmann W, Thorandt V (eds) Proceedings of the 16th working meeting on European VLBI for geodesy and astrometry, Bundesamt für Kartographie und Geodäsie, LeipzigGoogle Scholar
  8. Elgered G, Lundh P (1983) A dual channel water vapor radiometer system. Res. Rep. 145, Chalmers University of Technology, Research Laboratory of Electronics and Onsala Space Observatory, OnsalaGoogle Scholar
  9. Gambis D (2004) Monitoring earth orientation using space-geodetic techniques: state-of-the-art and prospective. J Geod 78(4–5):295–303. DOI 10.1007/s00190-004-0394-1CrossRefGoogle Scholar
  10. Haas R, Eschelbach C (2005) The 2002 local tie at the Onsala Space Observatory. In: Richter B, Schwegmann W, Dick W (eds) Proceedings of the IERS workshop on site co-location, vol 33. Matera, 23–24 October 2003. IERS Technical Note, pp 55–63Google Scholar
  11. Hugentobler U, Dach R, Fridez P (2004) (eds) Bernese GPS Software, Version 5.0. Astronomical Institute, University of BerneGoogle Scholar
  12. Kaniuth K, Huber S (2003) An assessment of radome effects on height estimation in the EUREF network. In: Torre J, Hornik H (eds) Mitteilungen des Bundesamtes für Kartographie und Geodäsie, vol 29, pp 97–102Google Scholar
  13. Krügel M, Tesmer V, Angermann D, Thaller D, Rothacher M, Schmid R (2004) CONT02 Campaign—combination of VLBI and GPS. In: Vandenberg N, Baver K (eds) International VLBI service for Geodesy and Astrometry 2004 General meeting proceedings, NASA/CP-2004-212255, Greenbelt, pp 418–422Google Scholar
  14. MacMillan D (1995) Atmospheric gradients from very long baseline interferometry observations. Geophys Res Lett 22:1041–1044CrossRefGoogle Scholar
  15. MacMillan D, Ma C (1997) Atmospheric gradients and the VLBI terrestrial and celestial reference frames. Geophys Res Lett 24:453–456CrossRefGoogle Scholar
  16. McCarthy D, Petit G (2004) IERS Conventions 2003, IERS Technical Note 32, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  17. Moritz H (1992) Geodetic reference system 1980. Bull Geod 66(2):187–192CrossRefGoogle Scholar
  18. Niell A (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101:3227–3246CrossRefGoogle Scholar
  19. Niell A, Coster A, Solheim F, Mendes V, Toor P, Langley R, Upham C (2001) Comparison of measurements of atmospheric wet delay by radiosonde water vapor radiometer, GPS and VLBI. J Atmos Ocean Technol 18:830–850CrossRefGoogle Scholar
  20. Nothnagel, A (2000) Der Einfluss des Wasserdampfes auf die modernen raumgestützen Messverfahren. Mitteilungen des Bundesamtes für Kartographie und Geodäsie, 16, Frankfurt a. M.Google Scholar
  21. Pottiaux E, Becker M, Bürki B, Gyger R, Häfele P, Plötz C, Schlüter W, Schwarz W, Somieski A, Warnant R (2003) The RadCalWet Observation Campaign. EGS-AGU-EUG Joint Assembly. Nice, 6–11 April 2003, Geophysical Research Abstracts, vol 6Google Scholar
  22. Rothacher M, Beutler G (1998) The role of GPS in the study of global change. Phys Chem Earth 23(9–10):1029–1040CrossRefGoogle Scholar
  23. Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites, in the use of artificial satellites for geodesy. Geophys Monogr 15:247–251Google Scholar
  24. Saastamoinen J (1973) Contribution to the theory of atmospheric refraction, Bull Géod 105, 279–298, 106, 383–397, 107, 13–34Google Scholar
  25. Sarti P, Sillard P, Vittiarri L (2004) Surveying co-located space geodetic instruments for ITRF computation. J Geod 78(3):210–222. DOI 10.1007/s00190-004-0387-0CrossRefGoogle Scholar
  26. Schlüter W, Himwich E, Nothnagel A, Vandenberg N, Whitney A (2002) IVS and its important role in the maintenance of the global reference systems. Adv Space Res 30(2):145–150CrossRefGoogle Scholar
  27. Schmid R, Rothacher M, Thaller D, Steigenberger P (2005) Absolute phase center corrections of satellite and receiver antennas: impact on global GPS solutions and estimation of azimuthal phase center variations of the satellite antenna. GPS Solut 9(4):283–293. DOI 10.1007/s10291-005-0134-xCrossRefGoogle Scholar
  28. Snajdrova K, Boehm J, Willis P, Haas R, Schuh H (2006) Multi-technique comparison of tropospheric zenith delays derived during CONT02 campaign. J Geod 79(10–11):616–623. DOI 10.1007/s00190-005-0010-zGoogle Scholar
  29. Steigenberger P, Schmid R, Rothacher M, Tesmer V, Krügel M, Vey S (2005) Homogeneous long-time series of GPS and VLBI troposphere parameters. EGU General Assembly, 25–29 April 2005, Vienna, Geophysical Research Abstracts, vol 7Google Scholar
  30. Steinforth C, Haas R, Lidberg M, Nothnagel A (2003) Stability of space geodetic rReference points at Ny-Å lesund and their excentricity vectors. In: Schwegmann W, Thorandt V (eds) Proceedings of the 16th working meeting on European VLBI for Geodesy and Astrometry, Bundesamt für Kartographie und Geodäsie, LeipzigGoogle Scholar
  31. Thaller D, Dill R, Krügel M, Steigenberger P, Rothacher M, Tesmer V (2006) CONT02 analysis and combination of long EOP series. In: Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the earth system from space. Springer, BerlinGoogle Scholar
  32. Thaller D, Krügel M, Schmid R, Rothacher M, Tesmer V (2006) Combined earth orientation parameters based on homogeneous and continuous VLBI and GPS data. J Geod (in press)Google Scholar
  33. Titov O, Tesmer V, Boehm J (2004) OCCAM v.6.0 software for VLBI data analysis. In: Vandenberg N, Baver K (eds) International VLBI Service for Geodesy and Astrometry 2004 general meeting proceedings, NASA/CP-2004-212255, Greenbelt, pp 311–314Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Manuela Krügel
    • 1
    Email author
  • Daniela Thaller
    • 2
  • Volker Tesmer
    • 1
  • Markus Rothacher
    • 2
  • Detlef Angermann
    • 1
  • Ralf Schmid
    • 3
  1. 1.Deutsches Geodätisches Forschungsinstitut (DGFI)MunichGermany
  2. 2.GeoForschungsZentrum Potsdam (GFZ)PotsdamGermany
  3. 3.Institut für Astronomische und Physikalische GeodäsieTU MünchenMunichGermany

Personalised recommendations