Journal of Geodesy

, Volume 81, Issue 6–8, pp 433–441 | Cite as

Indirect approach to invariant point determination for SLR and VLBI systems: an assessment

  • John Dawson
  • Pierguido Sarti
  • Gary M. Johnston
  • Luca Vittuari
Original Article


We assess the accuracy of some indirect approaches to invariant point (IVP), or system reference point, determination of satellite laser ranging (SLR) and very long baseline interferometry (VLBI) systems using both observed and simulated survey data sets. Indirect IVP determination involves the observation of targets located on these systems during specific rotational sequences and by application of geometrical models that describe the target motion during these sequences. Of concern is that most SLR and VLBI systems have limited rotational freedom thereby placing constraint on the reliability of parameter estimation, including the IVP position. We assess two current approaches to IVP analysis using survey data observed at the Yarragadee (Australia) SLR and the Medicina (Italy) VLBI sites and also simulated data of a large rotationally constrained (azimuth-elevation) VLBI system. To improve reliability we introduce and assess some new geometric conditions, including inter-axis, inter-circle and inter-target conditions, to existing IVP analysis strategies. The error component of a local tie specifically associated with the indirect determination of SLR and VLBI IVP is less than 0.5 mm. For systems with significant rotational limits we find that the inter-axis and inter-circle conditions are critical to the computation of unbiased IVP coordinates at the sub-millimetre level. When the inter-axis and inter-circle geometric conditions are not imposed, we retrieve biased vertical coordinates of the IVP (in our simulated VLBI system) in the range of 1.2–3.4 mm. Using the new geometric conditions we also find that the axis-offset estimates can be recovered at the sub- millimetre accuracy (0.5 mm).


Local tie Indirect method Invariant point (IVP) SLR VLBI 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the international terrestrial reference Frame for earth science applications. J Geophys Res 107(B10):2214 DOI:10.1029/2001JB000561CrossRefGoogle Scholar
  2. Bergstrand S, Haas R, Johansson J (2000) A new GPS–VLBI tie at the Onsala space observatory. In: Vandenberg N, Baver K (eds) International VLBI service for geodesy and astrometry 2000, general meeting proceedings of NASA/CP-2000-209893, Kotzting, pp 128–132Google Scholar
  3. Combrinck L (2000) Local surveys of VLBI telescopes. In: Vandenberg N, Baver K (eds) International VLBI service for geodesy and astrometry, general meeting Proceedings of NASA/CP-2000-209893, Kotzting, pp 118–127Google Scholar
  4. Combrinck L, Merry CL (1997) Very long baseline interferometry antenna axis offset and intersection determination using GPS. J Geophys Res 102(B11):24741–24743CrossRefGoogle Scholar
  5. Harvey B (1991) Telescope axes surveys. Aust J Geod Photogram Surv 54:1–18Google Scholar
  6. Haas R, Kirchner M (2001) Local survey activities at the Onsala Space Observatory 1999–2001. Proceedings of the XV working meeting on European VLBI for geodesy and astrometry, Institut d’Estudis Espacials de Catalunya, Consejo Superior de Investigaciones Científicas, Barcelona, pp 177–184Google Scholar
  7. IERS (2005) In: Richter B, Dick WR, Schwegmann W (eds) Proceedings of the IERS workshop on site co-location. IERS technical note no. 33, international Earth rotation and reference systems service, Central Bureau, Verlag des Bundesamts für Kartographie und Geodäsie, 148 ppGoogle Scholar
  8. Johnston G, Dawson J (2004a) The 2003 Yarragadee (Moblas 5) local tie survey. Geoscience Australia record 2004/19, 27 pp Scholar
  9. Johnston G, Dawson J (2004b) The 2002 Mount Pleasant (Hobart) radio telescope local tie survey. Geoscience Australia record, 2004/21, 21 pp. Scholar
  10. Johnston G, Dawson J, Naebkhil S (2004) The 2003 Mount Stromlo local tie survey. Geoscience Australia record, 2004/20, 26 pp. Scholar
  11. Ma C (1978) Very long baseline interferometry applied to polar motion, relativity and geodesy. Technical memo 79582, NASA, GreenbeltGoogle Scholar
  12. Matsuzaka S, Hatanaka Y, Nemoto K, Fukuzaki Y, Kobayashi K, Abe K, Akiyama T (2002) VLBI–GPS Collocation method at Geographical Survey Institute. In: Vandenberg N, Baver K (eds) International VLBI service for geodesy and astrometry 2002, general meeting Proceedings of the NASA/CP-2002-210002, Tsukuba, pp 96–100Google Scholar
  13. Microsearch (1993), GeoLab user’s guide—version 93-05-20. http://www.msearchcorp.comGoogle Scholar
  14. Ray J, Altamimi Z (2005) Evaluation of co-location ties relating the VLBI and GPS reference frames. J Geod 79(4–5):189–195 DOI: 10.1007/s00190-005-0456-zCrossRefGoogle Scholar
  15. Sarti P, Sillard P, Vittuari L (2004) Surveying co-located space-geodetic instruments for ITRF computation. J Geod 78(3): 210–222 DOI: 10.1007/s00190-004-0387-0CrossRefGoogle Scholar
  16. Sawyer R (2001) STAR*NET-PRO V6 least squares survey network adjustment program reference manual, OaklandGoogle Scholar
  17. Strang van Hees GL (1982) Variance-covariance transformations of geodetic networks. Manuscr Geod 7(1):1–20Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • John Dawson
    • 1
    • 2
  • Pierguido Sarti
    • 3
  • Gary M. Johnston
    • 4
  • Luca Vittuari
    • 5
  1. 1.Geoscience AustraliaCanberraAustralia
  2. 2.Research School of Earth SciencesThe Australian National UniversityCanberraAustralia
  3. 3.Istituto di Radioastronomia (IRA)Istituto Nazionale di Astrofisica (INAF)BolognaItaly
  4. 4.Geoscience AustraliaCanberraAustralia
  5. 5.Dipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento, del TerritorioUniversità BolognaBolognaItaly

Personalised recommendations