Advertisement

Journal of Geodesy

, Volume 81, Issue 5, pp 337–344 | Cite as

Is the instrumental drift of superconducting gravimeters a linear or exponential function of time?

  • Michel Van CampEmail author
  • Olivier Francis
Original Article

Abstract

The instrumental drift of the superconducting gravimeter in Membach, Belgium, is estimated using 9 years of co-located and episodic absolute gravity measurements. We show that the best model of the long-term drift of the SG-C021 is an exponential. The thermal levelers used to compensate tilts are unlikely to induce the observed drift. Rather, the capacitance bridge, magnetic variations, gas adsorption on the levitating sphere, or helium gas pressure variations around it are most likely the possible combined causes of the observed instrumental drift. In practice, either linear or exponential drift models are equivalent as long as the record duration does not exceed 10 years. For longer records, this study demonstrates that an exponential models the drift better than a simple linear trend.

Keywords

Superconducting gravimeter Absolute gravimeter Instrumental drift Setup noise 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amalvict M, Hinderer J, Mäkinen J, Rosat S, Rogister Y (2004) Long-term and seasonal gravity changes at the Strasbourg station and their relation to crustal deformation and hydrology. J Geodyn 38(3–5):343–353CrossRefGoogle Scholar
  2. Bower DR, Liard J, Crossley DJ, Bastien R (1991) Preliminary calibration and drift assessment of the superconducting gravimeter GWR12 through comparison with the absolute gravimeter JILA2. In: Poitevin C (ed) Cahiers du Centre Européen de Géodynamique et de Séismologie, vol 3. Luxembourg, pp 129–142Google Scholar
  3. Crossley DC, Hinderer J, Boy J-P (2005) Time variation of the European gravity field from superconducting gravimeters. Geophys J Int 161:257–264CrossRefGoogle Scholar
  4. Francis O, Van Camp M, van Dam T, Warnant R, Hendrickx M (2004) Indication of the uplift of the Ardenne in long term gravity variations in Membach (Belgium). Geophys J Int 158(1):346–352CrossRefGoogle Scholar
  5. Goodkind JM (1999) The superconducting gravimeter. Rev Sci Instrum 70(11):4131–4152CrossRefGoogle Scholar
  6. Goodkind JM, Young C, Richter B (1991) Comparison of two superconducting gravimeters and an absolute gravimeter at Richmond, Florida. In: Poitevin C (ed) Cahiers du Centre Européen de Géodynamique et de Séismologie, vol 3. Luxembourg, pp 91–98Google Scholar
  7. Hammer Ø, Harper DAT, Ryan PD (2001). PAST: paleontological statistics software package for education and data Palaeontologia Electronica 4(1):9. http://palaeo-electronica.org/2001_1/past/issue1_01.htmGoogle Scholar
  8. Harnisch M, Harnisch G, Nowak I, Richter B, Wolf P (2000) The dual sphere superconducting gravimeter CD029 at Frankfurt a.M. and Wettzell. First results and calibration. In: Ducarme B, Barthélemy J (eds) Cahiers du Centre Européen de Géodynamique et de Séismologie, vol. 3. Luxembourg, pp 39–56Google Scholar
  9. Kroner C, Jahr Th, Jentzsch G (2004) Results from 44 months of observations with a superconducting gravimeter at Moxa/Germany. J Geodyn 38(3–5):263–280CrossRefGoogle Scholar
  10. Prothero WA, Goodkind JM (1968) A superconducting gravimeter. Rev Sci Instrum 39:1257CrossRefGoogle Scholar
  11. Richter B, Zerbini S, Matonti F, Simon D (2004) Long-term crustal deformation monitored by gravity and space techniques at Medicina, Italy and Wettzell, Germany. J Geodyn 38(3–5):292–292Google Scholar
  12. Van Camp M, Williams SDP, Francis O (2005) Uncertainty of absolute gravity measurements. J Geophys Res 110:B05406. DOI 10.1029/2004JB003497CrossRefGoogle Scholar
  13. Van Camp M, Vanclooster M, Crommen O, Petermans T, Verbeeck K, Meurers B, van Dam T, Dassargues A (2006) Hydrogeological investigations at the Membach station, Belgium and application to correct long periodic gravity variations. J Geophys Res 111. DOI 10.1029/2006JB004405Google Scholar
  14. Virtanen H, Kääriäinen J (1997) The GWR T020 superconducting gravimeter 1994–1996 at the Metsähovi station, Finland. In: Reports of the Finnish Geodetic Institute, vol 97, p 4, HelsinkiGoogle Scholar
  15. Warburton RJ, Brinton EW (1995) Recent developments in GWR Instrument’s superconducting gravimeters, in Cahiers du Centre Européen de Géodynamique et de Séismologie, vol. 11, edited by C. Poitevin, Luxembourg, pp. 23–56Google Scholar
  16. Williams SDP (2003) Offsets in global positioning system time series. J Geophys Res 108, B6, 2310. DOI 10.1029/2002JB 002156Google Scholar
  17. Zerbini S, Richter B, Negusini M, Romagnoli C, Simon D, Domenichina F, Schwahn W (2001) Height and gravity variations by continuous GPS, gravity and environmental parameter observations in the southern Po Plain, near Bologna, Italy. Earth Planet Sci Lett 192:267–279CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Royal Observatory of BelgiumBruxellesBelgium
  2. 2.Faculty of Sciences, Technology and CommunicationUniversity of LuxembourgLuxembourgGrand-Duchy of Luxembourg

Personalised recommendations