Journal of Geodesy

, Volume 81, Issue 3, pp 213–230

An improved and extended GPS-derived 3D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia

  • Martin Lidberg
  • Jan M. Johansson
  • Hans-Georg Scherneck
  • James L. Davis
Original Article

Abstract

We present a new GPS-derived 3D velocity field for the Fennoscandia glacial isostatic adjustment (GIA) area. This new solution is based upon ∼3,000 days of continuous GPS observations obtained from the permanent networks in Fennoscandia. The period encompasses a prolongated phase of stable observation conditions after the northern autumn of 1996. Several significant improvements have led to smaller uncertainties and lower systematic errors in the new solutions compared to our previous results. The GPS satellite elevation cut-off angle was lowered to 10°, we fixed ambiguities to integers where possible, and only a few hardware changes occurred over the entire network. The GAMIT/GLOBK software package was used for the GPS analysis and reference frame realization. Our new results confirmed earlier findings of maximum discrepancies between GIA models and observations in northern Finland. The reason may be related to overestimated ice-sheet thickness and glaciation period in the north. In general, the new solutions are more coherent in the velocity field, as some of the perturbations are now avoided. We compared GPS-derived GIA rates with sea-level rates from tide-gauge observations, repeated precise leveling, and with GIA model computations, which showed consistency.

Keywords

Glacial isostatic adjustment (GIA) Postglacial rebound (PGR) Global Positioning System (GPS) Terrestrial reference frame (TRF) ITRF2000 GAMIT/GLOBK software Fennoscandia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altamimi Z, Sillard P, Boucher C (2002) ITRF 2000: a new release of the international terrestrial reference frame for earth science applications. J Geophys Res 107(B10):2214. DOI 10.1029/2001JB000561CrossRefGoogle Scholar
  2. Altamimi Z, Sillard P, Boucher C (2003) The impact of a no-net-rotation condition on ITRF2000. Geophys Res Lett 30(2):1064. DOI 10.1029/2002GL016279CrossRefGoogle Scholar
  3. Bergstrand S, Scherneck H-G, Lidberg M, Johansson J M (2006) BIFROST: noise properties of GPS time series. IAG/IAPSO/IABO joint assembly proceedings, Cairns, Springer (in press)Google Scholar
  4. Dong D, Fang P, Bock Y, Cheng MK, Miyazaki S (2002) Anatomy of apparent seasonal variations from GPS-derived site position time series. J Geophys Res 107(B4). DOI 10.1029/2001JB000573Google Scholar
  5. Ekman M (1991) A concise history of post glacial land uplift research (from its beginning to 1950). Terra Nova 3:358–365Google Scholar
  6. Ekman M (1996) A consistent map of the postglacial uplift of Fennoscandia. Terra Nova 8:158–165Google Scholar
  7. Ekman M (1998) Postglacial uplift rates for reducing vertical positions in geodetic reference systems. In: Jonsson B (ed) Proceedings of the General Assembly of the Nordic Geodetic Commission, May 25–29, ISSN 0280-5731 LMV-rapport 1999.12Google Scholar
  8. Ekman M, Mäkinen J (1996) Recent postglacial rebound, gravity change and mantle flow in Fennoscandia. Geophys J Int 126:229–234CrossRefGoogle Scholar
  9. EUREF (2005) EUREF Permanent Network. http://www.epncb.oma.be/. Cited June 2005Google Scholar
  10. FGI (2005) The Finnish Permanent GPS Network (FinnRef). http://www.fgi.fi/osastot/geodesia/projektit/finnref/index_eng. html. Cited June 2005Google Scholar
  11. Ge M, Gendt G, Dick G, Zhang FP, Reigber C (2005) Impact of GPS satellite antenna offsets on scale changes in global network solutions. Geophys Res Lett 32 L06310. DOI 10.1029/2004GL022224Google Scholar
  12. Herring T (2003) MATLAB Tools for viewing GPS velocities and time series. GPS solut 7:194–199CrossRefGoogle Scholar
  13. Frängsmyr T (1976) Upptäckten av istiden: studier i den moderna geologins framväxt = the discovery of the ice age. Almqvist & Wiksell, ISBN: 91-85286-08-7; ISBN: 91-85286-07-9Google Scholar
  14. Johansson J M, Davis JL, Scherneck H-G, Milne GA, Vermeer M, Mitrovica JX, Bennett RA, Jonsson B, Elgered G, Elósegui P, Koivula H, Poutanen M, Rönnäng BO, Shapiro II (2002) Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results. J Geophys Res 1079(B8). DOI 10.1029/2001B000400Google Scholar
  15. Kaniuth K, Vetter S (2004) GPS estimates of postglacial uplift in Fennoscandia. Zeitchrift für Geodäsie. Geoinform Landmanage 129:168–175Google Scholar
  16. Kedar S, Hajj GA, Wilson BD, Heflin MB (2003) The effect of the second order GPS ionospheric correction on receiver positions. Geophys Res Lett 30(16):1829. DOI 10.1029/2003GL017639CrossRefGoogle Scholar
  17. King RW (2002) Documentation for the GAMIT GPS analysis software. MIT Internal Report, 206 pp (http://www-gpsg.mit.edu/~simon/gtgk/GAMIT.pdf)Google Scholar
  18. King RW, Herring TA (2002) Global Kalman filter VLBI and GPS analysis program, MIT Internal Report, 98 pp (http://www-gpsg.mit.edu/~simon/gtgk/GLOBK.pdf)Google Scholar
  19. Kim BC, Tinin MV (2006) Contribution of Ionospheric Irregularities to the Error of Dual-frequency GNSS Positioning. J Geod (in press)Google Scholar
  20. Koivula H, Ollikainen M, Poutanen M (1998) Use of the Finnish permanent GPS network (FinnNet) in regional GPS campaigns. In: Brunner FK (ed) Advances in positioning and reference frames. Springer, Berlin Hidelberg New York, pp 137–142Google Scholar
  21. Lambeck K, Smither C, Johnston P (1998a) Sea-level change, glacial rebound, and mantle viscosity for northern Europe. Geophys J Int 134:102–144CrossRefGoogle Scholar
  22. Lambeck K, Smither C, Ekman M (1998b) Tests of glacial rebound models for Fennoscandinavia based on instrumented sea- and lake-lever records. Geophys J Int 135:375–387CrossRefGoogle Scholar
  23. Mao A, Harrison CGA, Dixon TH (1999) Noise in GPS coordinate time series. J Geophys Res 104:2797–2816CrossRefGoogle Scholar
  24. McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gurkan O, Hamburger M, Hurst K, Kahle H, Kastens K, Kekelidze G, King R, Kotzev V, Lenk O, Mahmoud S, Mishin A, Nadariya M, Ouzounis A, Paraadissis D, Peter Y, Prilepin M, Reilinger R, Sanli I, Seeger H, Tealeb A, Toksöz MN, Veis G (2000) Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterrainan and Caucasus. J Geophys Res 1059(B3):5695–5719 (1999JB900351)CrossRefGoogle Scholar
  25. Milne GA, Mitrovica JX (1998) Postglacial sea-level change on a rotating earth. Geophys J Int 133(1):1–19CrossRefGoogle Scholar
  26. Milne GA, Davis JL, Mitrovica JX, Scherneck H-G, Johansson JM, Vermeer M, Koivula H (2001) Space-geodetic constraints on glacial isostatic adjustments in fennoscandia. Science 291:2381–2385CrossRefGoogle Scholar
  27. MIT (2005) GAMIT/GLOBK Matlab Tools. http://geoweb.mit.edu/~tah/GGMatlab/. Cited June 2005Google Scholar
  28. Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101:3228–3246CrossRefGoogle Scholar
  29. Nikolaidis RM (2002) Observation of geodetic and seismic deformation with the global positioning system. Ph.D. thesis, University of California, San DiegoGoogle Scholar
  30. Panafidina N, Malkin Z, Webber R (2006) A new combined European Permanent Network station coordinates solution. J Geod (in press)Google Scholar
  31. Penna NT, Stewart MP (2003) Aliased tidal signatures in continuous GPS height time series. Geophys Res Lett 30(23):2184. DOI 10.1029/2003GL018828CrossRefGoogle Scholar
  32. SATREF (2005) SATREF. http://www.satref.no/. Cited June 2005Google Scholar
  33. Scherneck H-G, Vermeer M, Mitrovica JX, Milne GA (2002) BIFROST: Observing the three-dimensional deformation of Fennoscandia. In Ice sheets, sea level and the dynamic earth. Geodynam Ser 29; American Geophysical Union, WashingtonGoogle Scholar
  34. SWEPOS (2005) SWEPOS, A national network of reference stations for GPS. http://swepos.lmv.lm.se/english/index.htm. Cited June 2005Google Scholar
  35. Stewart MP, Penna NT, Lichti DD (2005) Investigating the propagation mechanism of unmodelled systematic errors on coordinate time series estimated using least squares. J Geod 79(8):479–489. DOI 10.1007/s00190-005-0478-6CrossRefGoogle Scholar
  36. Tregoning P, van Dam T (2005) Effects of atmospheric pressure loading and seven-parameter transformations on estimates of geocenter motion and station heights from space geodetic observations. J Geophys Res 110:B03408. DOI 10.1029/2004JB003334CrossRefGoogle Scholar
  37. Watson C, Tregoning P, Coleman R (2006) Impact of solid Earth tide models on GPS coordinate and tropospheric time series. Geophys Res Lett 33:L08306. DOI 10.1029/2005GL025538CrossRefGoogle Scholar
  38. Webb F H, Zumberge J F (1993) An introduction to the GIPSY/ OASIS-II, Publ. D-11088 Jet Propulsion Laboratory, PasadenaGoogle Scholar
  39. Wessel P, Smith WHF (1998) New, improved version of Generic Mapping Tools released. EOS Trans Amer Geophys U. 79(47):579CrossRefGoogle Scholar
  40. Williams SPD (2003) The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J Geod 76:483–494. DOI 10.1007/s001990-002-0283-4CrossRefGoogle Scholar
  41. Williams SPD, Bock Y, Fang P, Jamason P, Nikolaidis RM, Prawirodirdjo L, Miller M, and Johnson DJ (2004) Error analysis of continuous GPS position time series. J Geophys Res 109:B03412. DOI 10.1029/2003JB002741CrossRefGoogle Scholar
  42. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Martin Lidberg
    • 1
  • Jan M. Johansson
    • 1
  • Hans-Georg Scherneck
    • 1
  • James L. Davis
    • 2
  1. 1.Onsala Space ObservatoryChalmers University of TechnologyOnsalaSweden
  2. 2.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA

Personalised recommendations