Journal of Geodesy

, Volume 81, Issue 1, pp 17–38 | Cite as

Regional gravity modeling in terms of spherical base functions

  • Michael SchmidtEmail author
  • Martin Fengler
  • Torsten Mayer-Gürr
  • Annette Eicker
  • Jürgen Kusche
  • Laura Sánchez
  • Shin-Chan Han
Original Article


This article provides a survey on modern methods of regional gravity field modeling on the sphere. Starting with the classical theory of spherical harmonics, we outline the transition towards space-localizing methods such as spherical splines and wavelets. Special emphasis is given to the relations among these methods, which all involve radial base functions. Moreover, we provide extensive applications of these methods and numerical results from real space-borne data of recent satellite gravity missions, namely the Challenging Minisatellite Payload (CHAMP) and the Gravity Recovery and Climate Experiment (GRACE). We also derive high-resolution gravity field models by effectively combining space-borne and surface measurements using a new weighted level-combination concept. In addition, we outline and apply a strategy for constructing spatio-temporal fields from regional data sets spanning different observation periods.


Regional gravity modeling Spherical radial base functions Multi-resolution representation Spherical wavelets Challenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bjerhammer A (1967) On the energy integral for satellites. Rep. of the R. Inst. of Techn. Sweden, StockholmGoogle Scholar
  2. Cui J (1995) Finite pointset methods on the sphere and their application in physical geodesy. PhD thesis, University of Kaiserslautern, Mathematics Department, Geomathematics GroupGoogle Scholar
  3. Driscoll JR, Healy RM (1994) Computing Fourier transforms and convolutions on the 2-sphere. Adv Appl Math 15:202–250CrossRefMathSciNetGoogle Scholar
  4. Eicker A, Mayer-Gürr T, Ilk K-H (2006) A global CHAMP gravity field by merging of regional refinement patches. Adv Geosci (submitted) (Proceedings of the Joint CHAMP/GRACE Science Meeting)Google Scholar
  5. Fengler MJ (2005) Vector spherical harmonic and vector wavelet based non-linear Galerkin schemes for solving the incompressible Navier-Stokes equation on the sphere. PhD thesis (submitted), University of Kaiserslautern, Mathematics Department, Geomathematics GroupGoogle Scholar
  6. Fengler MJ, Freeden W, Gutting M (2004a) The Kaiserslautern geopotential model SWITCH-03 from Orbit Pertubations of the Satellite CHAMP and its comparison to the models EGM96, UCPH2002_02_0.5, EIGEN-1S, and EIGEN-2. Geophys J Int 157:499–514CrossRefADSGoogle Scholar
  7. Fengler MJ, Freeden W, Kusche J (2004b) Multiscale geopotential solutions from CHAMP orbits and accelerometry. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds) Earth observation with CHAMP, results from three years in orbit. Springer, Berlin Heidelberg New York, pp 139–144Google Scholar
  8. Fengler MJ, Freeden W, Gutting M (2005) The spherical Bernstein wavelet. Schriften zur Funktionalanalysis und Geomathematik, 20, University of Kaiserslautern, Mathematics Department, Geomathematics GroupGoogle Scholar
  9. Fengler MJ, Michel D, Michel V (2006a) Harmonic spline-wavelets on the 3-dimensional ball and their application to the reconstruction of the Earth’s density distribution from gravitational data at arbitrarily shaped orbits. ZAMM (accepted)Google Scholar
  10. Fengler MJ, Freeden W, Kohlhaas A, Michel V, Peters T (2006b) Wavelet modelling of regional and temporal variations of the Earth’s gravitational potential observed by GRACE. J Geod (accepted)Google Scholar
  11. Förste C, Flechtner F, Schmidt R, Meyer U, Stubenvoll R, Barthelmes F, König R, Neumayer K-H, Rothacher M, Reigber Ch, Biancale R, Bruinsma S, Lemoine J-M, Raimondo JC (2005) A new high resolution global gravity field model derived from combination of GRACE and CHAMP mission and altimetry/gravimetry surface gravity data. Presented at EGU General Assembly 2005, Vienna, AustriaGoogle Scholar
  12. Freeden W (1981) On approximation by harmonic splines. manuscr geod 6:193–244Google Scholar
  13. Freeden W (1999) Multiscale modelling of spaceborne geodata. Teubner, StuttgartzbMATHGoogle Scholar
  14. Freeden W, Schreiner M (1995) New wavelet methods for approximating harmonic functions. In: Sansò F (ed) Geodetic theory today. Springer, Berlin Heidelberg New York, pp 112–121Google Scholar
  15. Freeden W, Windheuser U (1996) Spherical wavelet transform and its discretization. Adv Comput Math 5:51–94CrossRefMathSciNetGoogle Scholar
  16. Freeden W, Michel V (2004) Multiscale potential theory (with applications to Earth’s sciences). Birkhäuser Verlag, BostonGoogle Scholar
  17. Freeden W, Gervens T, Schreiner M (1998a) Constructive approximation on the sphere (with applications to geomathematics). Clarendon Press, OxfordzbMATHGoogle Scholar
  18. Freeden W, Glockner O, Schreiner M (1998b) Spherical panel clustering and its numerical aspects. J Geod 72:586–599CrossRefGoogle Scholar
  19. Freeden W, Michel D, Michel V (2005) Local multiscale approximations of geostrophic flow: theoretical background and aspects of scientific computing. Mar Geod 28:313–329CrossRefGoogle Scholar
  20. Han SC (2003) Efficient global gravity determination from satellite-to-satellite tracking (SST). PhD thesis, Geodetic and Geoinformation Science, Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, ColumbusGoogle Scholar
  21. Han SC, Shum CK, Jekeli C, Alsdorf D (2005) Improved estimation of terrestrial water storage changes from GRACE. Geophys Res Lett 32:L07302. DOI 10.1029/2005GL022382CrossRefGoogle Scholar
  22. Han SC, Shum CK, Jekeli C (2006) Precise estimation of in situ geopotential differences from GRACE low-low satellite-to-satellite tracking and accelerometry data. J Geophys Res 111:B4411. DOI 10.1029/2005JB003719CrossRefGoogle Scholar
  23. Heiskanen W, Moritz H (1967) Physical geodesy. Freeman, San FranciscoGoogle Scholar
  24. Holschneider M, Chambodut A, Mandea M (2003) From global to regional analysis of the magnetic field on the sphere using wavelet frames. Phys Earth Planet Int 135:107–124CrossRefADSGoogle Scholar
  25. Ilk KH, Löcher A (2005) The use of the energy balance relations for validation of gravity field models and orbit determination. In: Sansò F (ed) A window on the future of geodesy. Springer, Berlin Heidelberg New York, pp 494–499CrossRefGoogle Scholar
  26. Jekeli C (1981) Alternative methods to smooth the Earth’s gravity field. Report 327, Department of Geodetic Science, The Ohio State University, ColumbusGoogle Scholar
  27. Jekeli C (1999) The determination of gravitational potential differences from satellite-to-satellite tracking. Cel Mech Dyn Astr 75:85–100CrossRefADSGoogle Scholar
  28. Kaula WM (1966) Theory of satellite geodesy. Blaisdell, WalthamGoogle Scholar
  29. Kern M, Schwarz KP, Sneeuw N (2003) A study on the combination of satellite, airborne, and terrestrial gravity data. J Geod 77:217–225CrossRefGoogle Scholar
  30. Koch KR (1999) Parameter estimation and hypothesis testing in linear models. Springer, Berlin Heidelberg New YorkGoogle Scholar
  31. Koch KR, Kusche J (2001) Regularization of geopotential determination from satellite data by variance components. J Geod 76:259–268CrossRefGoogle Scholar
  32. Kusche J (2002) Inverse Probleme bei der Gravitationsfeldbestimmung mittels SST- und SGG-Satellitenmissionen. German Geodetic Commission, Series C, 548, MunichGoogle Scholar
  33. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96, NASA/TP-1998-206861, National Aeronautics and Space Administration, MarylandGoogle Scholar
  34. Li TH (1999) Multiscale representation and analysis of spherical data by spherical wavelets. SIAM J Sci Comput 21:924–953CrossRefMathSciNetGoogle Scholar
  35. van Loon J, Kusche J (2005) Stochastic model validation of satellite gravity data: A test with CHAMP pseudo-observations. In: Jekeli C, Bastos L, Fernandes J (eds) Gravity, geoid and space missions. Springer, Berlin Heiodelbertg New York, pp 24–29CrossRefGoogle Scholar
  36. Maier T (2005) Wavelet-Mie-representations for solenoidal vector fields with applications to ionospheric geomagnetic data. J Appl Math 65:1888–1912MathSciNetGoogle Scholar
  37. Marchenko AN (1998) Parameterization of the Earth’s gravity field – Point and line singularities. Lviv Astronomical and Geodetic Society, LvivGoogle Scholar
  38. Mautz R, Schaffrin B, Shum CK, Han SC (2004) Regional geoid undulations from CHAMP represented by locally supported basis functions. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds) Earth observation with CHAMP, results from three years in orbit. Springer, Berlin Heidelberg New York, pp 230–236Google Scholar
  39. Mayer C (2004) Wavelet modelling of the spherical inverse source problem with application to geomagnetism. Inverse problems 20:1713–1728CrossRefMathSciNetADSGoogle Scholar
  40. Mayer-Gürr T, Ilk KH, Eicker A, Feuchtinger M (2005) ITG-CHAMP01: a CHAMP gravity field model from short kinematical arcs of a one-year observation period. J Geod 78:462–480CrossRefADSGoogle Scholar
  41. Mayer-Gürr T, Eicker A, Ilk KH (2006) Gravity field recovery from GRACE-SST data of short arcs. In: Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the Earth system from Space. Springer, Berlin Heidelberg New York, pp 131–148CrossRefGoogle Scholar
  42. Mertins A (1999) Signal analysis: wavelets, filter banks, time-frequency transforms and applications. Wiley, ChichesterzbMATHGoogle Scholar
  43. Moritz H (1980) Advanced physical geodesy. Wichmann, KarlsruheGoogle Scholar
  44. Narcowich FJ, Ward JD (1996) Nonstationary wavelets on them-sphere for scattered data. Appl Comput Harmon Anal 3:324–336CrossRefMathSciNetGoogle Scholar
  45. Panet I, Jamet O, Diament M, Chambodut A (2005) Modelling the Earth’s gravity field using wavelet frames. In: Jekeli C, Bastos L, Fernandes J (eds) Gravity, geoid and space missions. Springer, Berlin Heidelberg New York, pp 48–53CrossRefGoogle Scholar
  46. Pavlis NK, Holmes SA, Kenyon SC, Schmidt D, Trimmer R (2005) A preliminary gravitational model to degree 2160. In: Jekeli C, Bastos L, Fernandes J (eds) Gravity, geoid and space missions. Springer, Berlin Heidelberg New York, pp 18–23CrossRefGoogle Scholar
  47. Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer KH, Schwintzer P, Zhu SY (2005) An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J Geodyn 39(1):1–10CrossRefGoogle Scholar
  48. Sánchez L (2003) Bestimmung der Höhenreferenzfläche für Kolumbien. Diploma thesis. Institute of Planetary Geodesy, Technical University of DresdenGoogle Scholar
  49. Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS-1 satellite altimetry. J Geophys Res 102(B5):10039–10054 ( mar_grav.html)CrossRefADSGoogle Scholar
  50. Sansò F, Tscherning CC (2003) Fast spherical collocation: theory and examples. J Geod 77:101–112. DOI 10.1007/s00190-002-0310-5CrossRefGoogle Scholar
  51. Schmidt M, Fabert O, Shum CK (2005a) Towards the estimation of a multi-resolution representattion of the gravity field based on spherical wavelets. In: Sansò F (ed) A window on the future of geodesy. Springer, Berlin Heidelberg New York, pp 362–367CrossRefGoogle Scholar
  52. Schmidt M, Kusche J, van Loon J, Shum CK, Han SC, Fabert O (2005b) Multi-resolution representation of regional gravity data. In: Jekeli C, Bastos L, Fernandes J (eds) Gravity, Geoid and space missions. Springer, Berlin Heidelberg New York, pp 167–172CrossRefGoogle Scholar
  53. Schmidt M, Fabert O, Shum CK (2005c) On the estimation of a multi-resolution representation of the gravity field based on spherical harmonics and wavelets. J Geodyn 39:512–526CrossRefGoogle Scholar
  54. Schmidt M, Han SC, Kusche J, Sánchez L, Shum CK (2006) Regional high-resolution spatiotemporal gravity modeling from GRACE data using spherical wavelets. Geophys Res Lett 33:L08403. DOI 10.1029/2005GL025509CrossRefGoogle Scholar
  55. Schneider F (1996) The solution of linear inverse problems in satellite geodesy by means of spherical spline approximation. J Geod 71(1):2–15CrossRefGoogle Scholar
  56. Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from satellite measurements of time variable gravity. J Geophys Res 107(B9):2193. DOI 10.1029/2001JB000576CrossRefGoogle Scholar
  57. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004a) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L06619. DOI 10.1029/2003GL019285CrossRefGoogle Scholar
  58. Tapley BD, Bettadpur S, Ries J, Thompson P, Watkins M (2004b) GRACE measurements of mass variability in the Earth system. Science 305:503–505CrossRefADSGoogle Scholar
  59. Torge W (2001) Geodesy. de Gruyter, BerlinGoogle Scholar
  60. Wahr J, Molenaar M, Bryan F (1998) Time variability of the earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30229CrossRefADSGoogle Scholar
  61. Wang Y-M (1993) On the optimal combination of potential coefficient with terrestrial gravity data for FFT computations. manuscr geod 18:406–416Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Michael Schmidt
    • 1
    Email author
  • Martin Fengler
    • 2
  • Torsten Mayer-Gürr
    • 3
  • Annette Eicker
    • 3
  • Jürgen Kusche
    • 4
  • Laura Sánchez
    • 1
  • Shin-Chan Han
    • 5
  1. 1.Deutsches Geodätisches Forschungsinstitut (DGFI)MunichGermany
  2. 2.Geomathematics GroupTechnical University of KaiserslauternKaiserslauternGermany
  3. 3.Institute of Theoretical GeodesyUniversity of BonnBonnGermany
  4. 4.Delft Institute of Earth Observation and Space Systems (DEOS)Delft University of TechnologyDelftThe Netherlands
  5. 5.Geodetic Science, Department of Geological SciencesOhio State UniversityColumbusUSA

Personalised recommendations