Journal of Geodesy

, Volume 81, Issue 2, pp 103–110 | Cite as

The geopotential value W 0 for specifying the relativistic atomic time scale and a global vertical reference system

  • Milan BuršaEmail author
  • Steve Kenyon
  • Jan Kouba
  • Zdislav Šíma
  • Viliam Vatrt
  • Vojtěch Vítek
  • Marie Vojtíšková
Original Article


The TOPEX/Poseidon (T/P) satellite alti- meter mission marked a new era in determining the geopotential constant W 0. On the basis of T/P data during 1993–2003 (cycles 11–414), long-term variations in W 0 have been investigated. The rounded value W 0 =  62636856.0 ± 0.5) m 2 s −2 has already been adopted by the International Astronomical Union for the definition of the constant L G W 0/c 2 =  6.969290134 ×  10−10 (where c is the speed of light), which is required for the realization of the relativistic atomic time scale. The constant L G , based on the above value of W 0, is also included in the 2003 International Earth Rotation and Reference Frames Service conventions. It has also been suggested that W 0 is used to specify a global vertical reference system (GVRS). W 0 ensures the consistency with the International Terrestrial Reference System, i.e. after adopting W 0, along with the geocentric gravitational constant (GM), the Earth’s rotational velocity (ω) and the second zonal geopotential coefficient (J 2) as primary constants (parameters), then the ellipsoidal parameters (a,α) can be computed and adopted as derived parameters. The scale of the International Terrestrial Reference Frame 2000 (ITRF2000) has also been specified with the use of W 0 to be consistent with the geocentric coordinate time. As an example of using W 0 for a GVRS realization, the geopotential difference between the adopted W 0 and the geopotential at the Rimouski tide-gauge point, specifying the North American Vertical Datum 1988 (NAVD88), has been estimated.


Geopotential Vertical datum unification Relativistic atomic time scale 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AVISO User Handbook (1996) Merged TOPEX/POSEIDON Products (GDR-Ms) AVI–NT–02–101–CN, Edition 3.0, AVISO PublisherGoogle Scholar
  2. Burša M (1995a) Geoidal potential free of zero-frequency tidal distortion. Earth Moon Planets 71:59–64CrossRefGoogle Scholar
  3. Burša M (1995b) IAG SC3, Final report. Travaux de L’Association Internationale de Géodésie 30:370–384Google Scholar
  4. Burša M, Kouba J, Kumar M, Müller A, Raděj K, True SA, Vatrt V, Vojtíšková M (1999a) Geoidal geopotential and World Height System. Stud Geophys Geod 43:327–337CrossRefGoogle Scholar
  5. Burša M, Kouba J, Raděj K, Scott AT (1999b) Determination of the geopotential at the tide gauge defining the North American Vertical Datum 1988 (NAVD88). Geomatica 53(3):291–296Google Scholar
  6. Burša M, Groten E, Kenyon S, Kouba J, Raděj K, Vatrt V, Vojtíšková M (2002a) Earth’s dimension specified by geoidal geopotential. Stud Geophys Geod 46:1–8CrossRefGoogle Scholar
  7. Burša M, Kenyon S, Kouba J, Raděj K, Vatrt V, Vojtíšková M, šimek J (2002b) World height system specified by Geopotential at tide gauge stations. In: Drewes H, Dodson AH, Fortes LPS, Sánches L, Sandoval P (eds) Vertical reference systems. Springer, Berlin Heidelberg New York, pp 291–296Google Scholar
  8. Burša M, Kenyon S, Kouba J, šíma Z, Vatrt V, Vojtíšková M (2004) A global vertical reference frame based on four regional vertical datums. Stud Geophys Geod 48(3):493–502CrossRefGoogle Scholar
  9. Dorandeu J, Le Trayon PY (1999) Effects of global mean pressure variations on sea level changes from TOPEX/POSEIDON. J Atmos Ocean Technol 16:1279–1283CrossRefGoogle Scholar
  10. Fukushima T (1994) Time ephemeris. In: Kinoshita H, Nakai H (eds) Proceedings of the 26th symposium on celestial mechanics, Tokyo, Japan, January 12–13, 1994, pp 149–159Google Scholar
  11. Groten E (2004) Fundamental parameters and current (2004) Best estimates of the parameters of common relevance to astronomy, geodesy, and geodynamics. J Geod 77(10-11):724–731CrossRefGoogle Scholar
  12. Kouba J (2001) International GPS service (IGS) and world height system. Proc Acta Geod 1:35–46Google Scholar
  13. Kouba J (2004) Improved relativistic transformations in GPS. GPS Solutions 8(3):170–180CrossRefGoogle Scholar
  14. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The Development of the joint NASA GSFC and NIMA Geopotential Model EGM96; egm96/egm96.html or NASA Technical paper NASA/ TP1998206861, Goddard Space Flight Center, Greenbelt, USAGoogle Scholar
  15. Mainville A (1997) The February 1997 GPS on BM data file from Canada, a distribution data set for 1482 stations in Canada, Geodetic Survey Division, Natural Resources Canada Ottawa, Canada, May 9Google Scholar
  16. McCarthy DD, Petit G (eds) (2004) IERS conventions (2003). IERS Conventions Centre, IERS Technical Note No. 32, Vlg. des Bundesamts für Kartographie und Geodäsie, Frankfurt a. M., 127 ppGoogle Scholar
  17. Milbert DG (1995) Improvement of a high resolution geoid height model in the U.S. by GPS heights on NAVD88 benchmarks, IGeS Bulletin N. 4 “New Geoids in the world”, International Geoid Service, D.I.I.A.R. – Politecnico di Milano, 13–36Google Scholar
  18. Molodensky MS (1945) Basic problems of geodetic gravimetry. Trudy TsNIIGAiK, vyp. 42, 107 pp. The English version by the Office of Technical Services US Department of Commerce. In: Molodensky MS (ed) 1958: Grundbegriffe der geodätischen Gravimetrie (in German). S. 15–147, VEB Verlag Technik, BerlinGoogle Scholar
  19. Molodensky MS, Yeremeev VF, Yurkina MI (1960) Methods for study of the external gravitational field and figure of the Earth. Trudy TsNIIGAiK, Geodezizdat, Moscow (in Russian, English transl.: Israel Program for Scientific Translation, Jerusalem, 1962, 248 pp)Google Scholar
  20. Moritz H (1980) Geodetic reference system 1980. Bull Géod 54(3):395–405CrossRefGoogle Scholar
  21. Nesvorný D, šíma Z (1994) Refinements of the geopotential scale factor R 0 on the satellite altimetry basis. Earth Moon Planets 65:79–88CrossRefGoogle Scholar
  22. NRC (National Research Council) (1997) Satellite gravity and the geosphere, contributions to the study of the solid Earth and its fluid envelope, In: Dickey J (ed) Commission on Geosciences, Enviroment, and Resources. National Academy Press, Washington, pp 112Google Scholar
  23. Petit G (1998) Importance of a common framework for the realization of space-time reference systems. In: Rummel R, Drewes H, Bosh W, Hornik H (eds) Towards an integrated global geodetic observing system (IGGOS) International Association of Geodesy Symposia, vol.120. Springer, Berlin Heidelberg New York, pp 1–7Google Scholar
  24. Pizzetti P (1907) Höhere Geodäsie. Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Des sechsten Bandes erster Teil. Heft No. 2, Geodäsie und Geophysik, Leipzig, Verlag und Druck von B. G. Teubner, pp 117–243Google Scholar
  25. Pizzetti P (1913) Principii della teoria meccanica della figura dei pianeti. Pisa. E. Spoerri, XIII + 251 ppGoogle Scholar
  26. Rummel R, Heck B (2000) Report of the EUREF Techn. WG, IAG Section I, Comm. X, EUREF public (9), Munich, pp 114–115Google Scholar
  27. Seidelmann PK, Fukushima T (1992) Why new time scales? Astron Astrophys 265:833–838Google Scholar
  28. Soffel MH, Muller J, Wu X, Xu C (1991) Consistent relativistic VLBI theory with picosecond accuracy. Astron J 101:2306–2310CrossRefGoogle Scholar
  29. Soffel MH (2002) Practical consequencences of resolutions B1.3, B1.4, B1.5 and B1.9 concerning “Relativity in Astrometry, celestial Mechanics and Metrology”. In: Capitaine N, Gambis D, McCarthy DD, Petit G, Ray J, Richter B, Rothacher M, Standish EM, Vondrak J (eds) IERS technical Note No. 29; Proceedings of the IERS workshop on the Implementation of the New IAU Resolutions. Verlag des Bundesamtes für Kartograhie und Geodäsie, Frankfurt a. M.Google Scholar
  30. Tapley BD, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang F (2005) GGM02 – an improved Earth gravity field model from GRACE. J Geod DOI 10.1007/s00190-005-0480-zGoogle Scholar
  31. Wolf P, Petit G (1995) Relativistic theory for clock syntonization and the realization of geocentric coordinate times. Astron Astrophys 304:653–661Google Scholar
  32. Yurkina MI (1981) Geopotential at the vertical datum and controlling the levelling (in Russian). Geod Cartogr 10:11–15Google Scholar
  33. Yurkina MI (1996) Gravity potential at the major vertical datum as primary geodetic constant. Stud Geophys Geod 40:9–13CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Milan Burša
    • 1
    Email author
  • Steve Kenyon
    • 2
  • Jan Kouba
    • 3
  • Zdislav Šíma
    • 1
  • Viliam Vatrt
    • 4
  • Vojtěch Vítek
    • 5
  • Marie Vojtíšková
    • 4
  1. 1.Astronomical InstituteAcademy of Sciences of the Czech RepublicPragueCzech Republic
  2. 2.National Geospatial-Intelligence AgencyArnoldUSA
  3. 3.Geodetic Survey DivisionNatural Resources CanadaOttawaCanada
  4. 4.Geographical Service of the Army of the Czech Republic, Geographical Service of the Czech Armed ForcesMilitary Geography and Hydrometeorology OfficeDobruškaCzech Republic
  5. 5.HumpolecCzech Republic

Personalised recommendations