Journal of Geodesy

, Volume 80, Issue 8–11, pp 609–624 | Cite as

A model of present-day tectonic plate motions from 12 years of DORIS measurements

Original Article

Abstract

In the frame of the International DORIS Service (IDS), the Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS)/Collecte Localisation Satellites (CLS) Analysis Center (LCA) processes DORIS measurements from the SPOT, TOPEX/Poseidon and Envisat satellites and provides weekly station coordinates of the whole network to the IDS. Based on DORIS measurements, the horizontal and vertical velocities of 57 DORIS sites are computed. The 3D positions and velocities of the stations with linear motion are estimated simultaneously from the 12-year (1993–2004) combined normal equation matrix. We include 35 DORIS sites assumed to be located in the stable zones of 9 tectonic plates. For the motion of these plates, we propose a model (LCAVEL-1) of angular velocities in the ITRF2000 reference frame. Based on external comparison with the most recent global plate models (PB2002, REVEL, GSRM-1 and APKIM2000) and on internal analysis, we estimate an average velocity error of the DORIS solution of less than 3 mm/year. The LCAVEL-1 model presents new insights of the Somalia/Nubia pair of plates, as the DORIS technique has the advantage of having a few stations located on those two plates. We also computed (and provide in this article) the horizontal motion of the sites located close to plate boundaries or in the deformation zones defined in contemporary models. These computations could be used in further analysis for these particular regions of the Earth not moving as rigid plates.

Keywords

DORIS Tectonic plate model Geodetic velocities Somalia plate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the International Terrestrial Reference Frame for earth science applications. J Geophys Res 107(B10):2214. DOI 10.1029/2001JB000561CrossRefGoogle Scholar
  2. Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca–South America Euler vector. Earth Planet Sci Lett 171(3):329–334. DOI 10.1016/S0012-821X(99)00173-9CrossRefGoogle Scholar
  3. Argus DF, Gordon RG (1995) Plate motion and crustal deformation estimated with geodetic data from the Global Positioning System. Geophys Res Lett 22(15):1973–1976. DOI 10.1029/95GL02006CrossRefGoogle Scholar
  4. Beutler G, Rothacher M, Schaer S, Springer TA, Kouba J, Neilan RE (1999) The International GPS Service (IGS), an interdisciplinary support of Earth sciences. Adv Space Res 23(4):631–635CrossRefGoogle Scholar
  5. Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3):1027. DOI 10.1029/2001GC000252CrossRefGoogle Scholar
  6. Boucher C, Altamimi Z, Sillard P (1998) The 1997 International Terrestrial Reference Frame (ITRF97), Technical Note 27. International Earth Rotation and Reference Frames Service, Paris ObservatoryGoogle Scholar
  7. Bouille F, Cazenave A, Lemoine JM, Crétaux JF (2000) Geocentre motion from the DORIS space system and laser data to the LAGEOS satellites; comparison with surface loading data. Geophys J Int 143(1):71–82CrossRefGoogle Scholar
  8. Cazenave A, Valette JJ, Boucher C (1992) Positioning results with DORIS on SPOT2 after first year of mission. J Geophys Res 97(B5):7109–7119CrossRefGoogle Scholar
  9. Cazenave A, Gegout P, Soudarin L, Dominh K, Barlier F, Exertier P, Boudon Y (1993) Geodetic results from LAGEOS 1 and DORIS satellite data. In: Smith DE, Turcotte DL (eds) Contributions of space geodesy to geodynamics. Geodynamics series, vol 23. American Geophysical Union, Washington, pp 81–98Google Scholar
  10. Cazenave A, Dominh K, Ponchaut F, Soudarin L, Crétaux JF, Le Provost C (1999) Sea-level changes from TOPEX/Poseidon altimetry and tide gauges, and vertical crustal motions from DORIS. Geophys Res Lett 26(14):2077–2080. DOI 10.1029/1999GL900472CrossRefGoogle Scholar
  11. Chase C (1978) Plate kinematics: the Americas, East Africa, and the rest of the world. Earth Planet Sci Lett 37(3):355–368. DOI 10.1016/0012-821X(78)90051-1CrossRefGoogle Scholar
  12. Chu D, Gordon RG (1999) Evidence for motion between Nubia and Somalia along the Southwest Indian ridge. Nature 398:64–67CrossRefGoogle Scholar
  13. Cook DB, Fujita K, McMullen CA (1986) Present-day plate interactions in northeast Asia, North America, Eurasian, and Okhostk plates. J Geodyn 6(1–4):33–51CrossRefGoogle Scholar
  14. Crétaux JF, Soudarin L, Cazenave A, Bouillé F (1998) Present-day tectonic plate motions and crustal deformations from the DORIS space system. J Geophys Res 103(B12):30167–30181. DOI 10.1029/98JB02239CrossRefGoogle Scholar
  15. Crétaux JF, Soudarin L, Davidson FJM, Gennero MC, Berge-Nguyen M, Cazenave A (2002) Seasonal and interannual geocenter motion from SLR and DORIS measurements: comparison with surface loading data. J Geophys Res 107(B12):2374. DOI 10.1029/2002JB001820CrossRefGoogle Scholar
  16. DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101(2):425–478Google Scholar
  17. DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimate of current plate motions. Geophys Res Lett 21(20):2191–2194. DOI 10.1029/94GL02118CrossRefGoogle Scholar
  18. Drewes H (1990) Global plate motion parameters derived from actual space geodetic observation. In: Vyskocil P, Reigber C, Cross PA (eds) Global and regional geodynamics. Springer, Berlin Heidelberg New York, pp 30–37Google Scholar
  19. Drewes H, Angermann D (2001) The actual plate kinematics and crustal deformation model 2000 (APKIM 2000) as a geodetic reference system. In: Ádam J, Schwarz KP (eds) Vistas for geodesy in the new millennium. Springer, Berlin Heidelberg New York, pp 329–334Google Scholar
  20. Fagard H (2006) Twenty years of evolution of the DORIS permanent network: from its initial deployment to its renovation. J Geod (this volume)Google Scholar
  21. Fernandes RMS, Ambrosius BAC, Noomen R, Bastos L, Combrick L, Miranda JM, Spakman W (2004) Angular velocities of Nubia and Somalia from continuous GPS data: implications on present-day relative kinematics. Earth Planet Sci Lett 222(1):197–208. DOI 10.1016/j.epsl.2004.02.008CrossRefGoogle Scholar
  22. Gambis D (2004) Monitoring Earth orientation using space-geodetic techniques, state-of-the-art and prospective. J Geod 78(4–5):295–303. DOI 10.1007/s00190-004-0394-1CrossRefGoogle Scholar
  23. Gordon RG (1995) Present plate motions and plate boundaries. In: Ahrens TG (ed) Global Earth physics. Handbook of physical constants, vol 1. American Geophysical Union, Washington, pp 66–87Google Scholar
  24. Gruber T, Bode A, Reigber C, Schwintzer P, Balmino G, Biancale R, Lemoine JM (2000) GRIM5-C1: Combination solution of the global gravity field to degree and order 120. Geophys Res Lett 27(24):4005–4008. DOI 10.1029/2000GL011589CrossRefGoogle Scholar
  25. Jestin F, Huchon P, Gaulier JM (1994) The Somalia plate and the East African Rift system: present-day kinematics. Geophys J Int 116(3):637–654Google Scholar
  26. Kreemer C, Holt WE (2001) A no-net-rotation model of present-day surface motions. Geophys Res Lett 28(23):4407–4410. DOI 10.1029/2001GL013232CrossRefGoogle Scholar
  27. Kreemer C, Holt WE, Haines AJ (2003) An integrated global model of present-day plate motions and plate boundary deformation. Geophys J Int 154(1):8–34CrossRefGoogle Scholar
  28. Larson KM, Freymueller J, Philipsen S (1997) Global plate velocities from the Global Positioning System. J Geophys Res 102(B5):9961–9981. DOI 10.1029/97JB00514CrossRefGoogle Scholar
  29. Le Bail K (2004) Etude statistique de la stabilité des stations de géodésie spatiale. Application à DORIS. 10 Dec 2004. Thèse de doctorat en Dynamique des systèmes gravitationnels, Observatoire de ParisGoogle Scholar
  30. Le Bail K, Feissel-Vernier M (2003) Time series statistics of the DORIS and GPS co-located observations. In: Geophys Res Abs 5 EAE03-A-04078, EGS-AGU-EUG Joint Assembly, NiceGoogle Scholar
  31. Lefebvre M, Cazenave A, Escudier P, Biancale R, Crétaux JF, Soudarin L, Valette JJ (1996) Space tracking system improves accuracy of geodetic measurements. EOS Trans AGU 77(4):25, 28–29Google Scholar
  32. Lemaux J, Gordon R, Royer JY (2002) Location of the Nubia–Somalia boundary along the Southwest Indian ridge. Geology 30(4):339–342. DOI 10.1130/0091-7613(2002)030CrossRefGoogle Scholar
  33. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96, Technical report NASA/TP-1996 8-206861. NASA, GreenbeltGoogle Scholar
  34. Lemoine JM, Capdeville H (2006) A corrective model for Jason-1 DORIS Doppler data in relation to the South Atlantic Anomaly. J Geod (this volume)Google Scholar
  35. McKenzie DP, Davies D, Molnar P (1970) Plate tectonics of the Red Sea and East Africa. Nature 226(5542):243–248CrossRefGoogle Scholar
  36. Mangiarotti S, Cazenave A, Soudarin L, Crétaux JF (2001) Annual vertical crustal motions predicted from surface mass redistribution and observed by space geodesy. J Geophys Res 106(B3):4277–4291. DOI 10.1029/2000JB900347CrossRefGoogle Scholar
  37. Molnar P (1988) Continental tectonics in the aftermath of plate tectonics. Nature 335(6186):131–137CrossRefGoogle Scholar
  38. Noll C, Soudarin L (2006) On-line resources supporting the data, products, and information infrastructure for the International DORIS Service. J Geod (this volume). DOI 10.1007/s00190-006-0051-yGoogle Scholar
  39. Norabuena EO, Dixon TH, Stein S, Harrison CGA (1999) Decelerating Nazca–South America and Nazca–Pacific plate motions. Geophys Res Lett 26(22):3405–3408. DOI 10.1029/1999GL005394CrossRefGoogle Scholar
  40. Reigber C, Michel GW, Galas R, Angermann D, Klotz J, Chen JY, Papschev A, Arslanov R, Tzurkov VE, Ishanov MC (2001) New space geodetic constraints on the distribution of deformation in Central Asia. Earth Planet Sci Lett 191(1–2):157–165. DOI 10.1016/S0012-821X(01)00414-9CrossRefGoogle Scholar
  41. Reigber C, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine JM, König R, Loyer S, Neumayer H, Marty JC, Barthelmes F, Perosanz F, Zhu SY (2002) A high-quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys Res Lett 29(14):1692. DOI 10.1029/2002GL015064CrossRefGoogle Scholar
  42. Sahin M, Cross PA, Sellers PC (1992) Variance component estimation applied to satellite laser ranging. Bull Geod 66(3):284–295CrossRefGoogle Scholar
  43. San’kov V, Déverchère J, Gaudemer Y, Houdry F, Filippov A (2000) Geometry and rate of faulting in the North Baïkal Rift, Siberia. Tectonics 19(4):707–722CrossRefGoogle Scholar
  44. Sato K (1993) Tectonic plate motion and deformation inferred from Very Long Baseline Interferometry. Tectonophysics 220(1–4):69–87. DOI 10.1016/0040-1951(93)90224-8CrossRefGoogle Scholar
  45. Sella GF, Dixon TH, Mao A (2002) REVEL: a model for recent plate velocities from space geodesy. J Geophys Res 107(B4):2081. DOI 10.1029/2000JB000033CrossRefGoogle Scholar
  46. Smith DE, Kolenkiewicz R, Dunn PJ, Robbins W, Torrence MH, Klosko SM, Williamson RG, Pavlis EC, Douglas NB, Fricke SK (1990) Tectonic motion and deformation from satellite laser ranging to LAGEOS. J Geophys Res 95(B13):22013–22041Google Scholar
  47. Soudarin L, Cazenave A (1995) Large-scale tectonic plate motions measured with the DORIS space geodesy system. Geophys Res Lett 22(4):469–472. DOI 10.1029/94GL03382CrossRefGoogle Scholar
  48. Soudarin L, Crétaux JF, Cazenave A (1999) Vertical crustal motions from the DORIS space-geodesy system. Geophys Res Lett 26(9):1207–1210. DOI 10.1029/1999GL900215CrossRefGoogle Scholar
  49. Tapley BD, Bettadpur S, Watkins MM, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607. DOI 10.1029/2004GL019920CrossRefGoogle Scholar
  50. Tavernier G, Soudarin L, Larson K, Noll, C, Ries J, Willis P (2002) Current status of the DORIS pilot experiment and the future international DORIS Service. Adv Space Res 30(2):151–156. DOI 10.1016/s0273-1177(02)00279-x2CrossRefGoogle Scholar
  51. Tavernier G, Fagard H, Feissel-Vernier M, Lemoine F, Noll C, Ries JC, Soudarin L, Willis P (2005) The International DORIS Service (IDS). Adv Space Res 36(3):333–341. DOI 10.1016/j.asr.2005.03.102CrossRefGoogle Scholar
  52. Vigny C, Huchon P, Ruegg JC, Khanbari K, Asfaw LM (2006) Confirmation of Arabia plate slow motion by new GPS data in Yemen. J Geophys Res 111(B02402). DOI 10.1029/2004JB003229Google Scholar
  53. Wessel P, Smith WHF (2005) The Generic Mapping Tools (GMT) version 4.1, Technical reference & cookbook. School of Ocean and Earth Science and Technology, National Oceanic and Atmospheric Administration. http://gmt.soest.hawaii.edu/gmt/doc/pdf/GMT_Docs.pdfGoogle Scholar
  54. Williams SDP, Willis P (2006) Error analysis of weekly station coordinates in the DORIS network. J Geod (this volume). DOI 10.1007/s00190-006-0056-6Google Scholar
  55. Willis P, Heflin MB (2004) External validation of the GRACE GGM01C gravity field using GPS and DORIS positioning results. Geophys Res Lett 31(13):L13616. DOI 10.1029/2004GL020038CrossRefGoogle Scholar
  56. Willis P, Haines B, Berthias JP, Sengenes P, Le Mouel JL (2004) Behavior of the DORIS/Jason oscillator over the South Atlantic Anomaly. C R Geosci 336(9):839–846. DOI 10.1016/j.crte.2004.01.004CrossRefGoogle Scholar
  57. Willis P, Ries JC (2005) Defining a DORIS core network for Jason-1 precise orbit determination based on ITRF2000, methods and realization. J Geod 79(6–7):370–378. DOI 10.1007/s00190-005-0475-9CrossRefGoogle Scholar
  58. Willis P, Boucher C, Fagard H, Altamimi Z (2005a) Geodetic applications of the DORIS system at the French Institut Geographique National. C R Geosci 337(7):653–662. DOI 10.1016/j.crte.2005.03.002CrossRefGoogle Scholar
  59. Willis P, Soudarin L, Fagard H, Ries J, Noomen R (2005b) IDS recommendations for ITRF2004. IDS Central Bureau Technical Report. http://ids.cls.fr/html/report/IDS_for_ITRF2004_ v1_0.pdfGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Collecte Localisation Satellites (CLS)Parc Technologique du CanalRamonville Saint-AgneFrance
  2. 2.Laboratoire d’Etudes en Géophysique et Océanographie SpatialesToulouseFrance

Personalised recommendations