Journal of Geodesy

, Volume 80, Issue 8–11, pp 403–417 | Cite as

The International DORIS Service: genesis and early achievements

  • G. TavernierEmail author
  • H. Fagard
  • M. Feissel-Vernier
  • K. Le Bail
  • F. Lemoine
  • C. Noll
  • R. Noomen
  • J. C. Ries
  • L. Soudarin
  • J. J. Valette
  • P. Willis
Original Article


All space-geodetic techniques are now organized as separate services of the International Association of Geodesy (IAG), supporting the first pilot project “Global Geodetic Observing System (GGOS)”. The International DORIS (Détermination d’Orbite et Radiopositionnement Intégrés par Satellite) Service (IDS) was created in mid-2003 to organize a DORIS contribution to this project and to foster a larger international cooperation on this topic. The goal of this paper is to summarize the key steps that were taken to create this structure and to present its current organization and recent results. At present, more than 50 groups from 35 different countries participate in the IDS at various levels, including 43 groups hosting DORIS stations in 32 countries all around the globe. Four Analysis Centres (ACs) provide results, such as estimates of weekly or monthly station coordinates, geocentre variations or Earth polar motion, that will soon be used to generate IDS-combined products for geodesy and geodynamics. As a first test, a preliminary combination was performed for all the 2004 data from these four ACs. Three of them show RMS of weighted station residuals with respect to this combination solution between 1 and 2 cm. The main topic under investigation is a discrepancy in the scale factor of the terrestrial reference frame (TRF) to map the individual solutions into the combination solution, which reaches 6 cm (multiplying the unit-less scale factor by the Earth radius to get convert scale to millimetre in vertical at the Earth’s surface). Finally, foreseen improvements of the DORIS technology are discussed as well as future improvements concerning the service organization itself and the accuracy and reliability of its scientific products.


DORIS Global Geodetic Observing System (GGOS) Terrestrial reference frame (TRF) Precise orbit determination (POD) Earth rotation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan DW (1966) Statistics of atomic frequency standards. IEEE Trans 54:221–231Google Scholar
  2. Allan DW (1987) Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators. IEEE Trans 34:647–654Google Scholar
  3. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000, a new release of the International Terrestrial Reference Frame for earth science applications. J Geophys Res 107(B10):2214. DOI 10.1029/2001JB000561CrossRefGoogle Scholar
  4. Altamimi Z, Boucher C, Willis P (2005) Terrestrial reference frame requirements within GGOS perspective. J Geodyn 40(4–5):363–374. DOI 10.1016/j.jog.2005.06.002CrossRefGoogle Scholar
  5. Altamimi Z, Collilieux X, Boucher C (2006) DORIS contribution to ITRF2005. J Geod (this issue)Google Scholar
  6. Beutler G, Rothacher M, Schaer S, Springer TA, Kouba J, Neilan RE (1999) The International GPS Service (IGS), an interdisciplinary service in support of sciences. Adv Space Res 23(4):631–653. DOI 10.1016/S0273-1177(99)00161-1CrossRefGoogle Scholar
  7. Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J Geophys Res 108(B2): 210. DOI 10.1029/2002JB002082CrossRefGoogle Scholar
  8. Boucher C, Altamimi Z, Feissel M, Sillard P (1996) Results and analysis of the ITRF94. IERS technical note 20, Observatoire de ParisGoogle Scholar
  9. Chavet X, Valette J-J, Feissel-Vernier M (2003) Analysis of geocenter time series derived form SLR, GPS and DORIS. In: AGU fall meeting, San Francisco, 8–12 December 2003Google Scholar
  10. Choi, K-R, Ries JC, Tapley BD (2004) Jason-1 precision orbit determination by combining SLR and DORIS with GPS tracking data. Mar Geod 27(1–2):319–331. DOI 10.1080/01490410490465652CrossRefGoogle Scholar
  11. Cox C, Chao BF (2002) Detection of a large-scale mass redistribution in the terrestrial system since 1998. Science 297(5582):831–833. DOI 10.1126/science.1072188CrossRefGoogle Scholar
  12. Crétaux JF, Soudarin L, Cazenave A, Bouille F (1998) Present-day tectonic plate motions and crustal deformations from the DORIS space system. J Geophys Res 103(B12):30167–30181. DOI 10.1029/98JB02239CrossRefGoogle Scholar
  13. Deng X, Featherstone WE, Hwang C, Berry PAM (2002) Estimation of contamination of ERS-2 and POSEIDON satellite radar altimetry close to the coasts of Australia. Mar Geod 25(4):249–271. DOI 10.1080/01490410214990CrossRefGoogle Scholar
  14. Fagard H (2006) 20 years of evolution for the DORIS permanent network, from its initial deployment to its renovation. J Geod (this issue)Google Scholar
  15. Feissel-Vernier M, Le Bail K, Berio P, Coulot D, Ramillien G, Valette JJ (2006) Geocenter motion measured with DORIS and SLR, and geophysical evidence. J Geod (this issue)Google Scholar
  16. Fu L-L, Christensen, EJ Yamorone CA Jr, Lefebvre, M Menard, Y Dorrer, M Escudier P (1994) TOPEX/Poseidon mission overview. J Geophys Res 99(C12):24369–24382CrossRefGoogle Scholar
  17. Galleani L, Tavella P (2005) Tracking nonstationarities in clock noises using the dynamic Allan variance. In: Breakiron L (ed) Proceedings of the 36th annual precise time and time interval (PTTI) systems and applications meeting. Institute of Electrical and Electronics Engineers, Piscataway, P 392. ISBN 0-7803-9053-9, 508 ppGoogle Scholar
  18. Gambis D (2004) Monitoring Earth orientation using space-geodetic techniques, state-of-the-art and prospective. J Geod 78(4–5):295–303. DOI 10.1007/s00190-004-0394-1CrossRefGoogle Scholar
  19. Gambis D (2006) DORIS contribution to the determination of the Earth polar motion. J Geod (this issue) DOI 10.1007/s00190-006-0043-yGoogle Scholar
  20. Gruber T, Bode A, Reigber C, Schwintzer P, Balmino G, Biancale R, Lemoine JM (2000) GRIM5-C1: combination solution of the global gravity field to degree and order 120. Geophys Res Lett 27(24):4005–4008. DOI 10.1029/2000GL011589CrossRefGoogle Scholar
  21. Haines BJ, Bar-Sever YE, Bertiger WI, Desai S, Willis P (2004) One-centimeter orbit determination for Jason-1, new GPS-based strategies. Mar Geod 27(1–2):299–318. DOI 10.1080/01490410490465300CrossRefGoogle Scholar
  22. Imel DA (1994) Evaluation of the TOPEX/Poseidon dual-frequency ionosphere correction. J Geophys Res 99(C12):24895–24906. DOI 10.1029/94JC01869CrossRefGoogle Scholar
  23. Issler J-L (2005) Module 6: mission and payloads for radio-navigation and positioning. Payloads, spacecraft techniques and technologies, vol 2. Cepadues Editions, France, pp 216–218, 240, 248–252, 268–270. ISBN 2-85428-685-5Google Scholar
  24. Jayles C, Nhun-Fat B, Tourain C (2006) DORIS, system description and control of the signal integrity. J Geod (this issue) DOI 10.1007/s00190-006-0046-8Google Scholar
  25. Le Bail K (2004) Etude statistique de la stabilité des stations de géodésie spatiale. Application à DORIS. Thèse de doctorat en Dynamique des systèmes gravitationnels, Observatoire de ParisGoogle Scholar
  26. Le Bail K (2006) Estimating the noise in space-geodetic positioning. The case of DORIS. J Geod (this issue)Google Scholar
  27. Le Bail K, Feissel-Vernier M, Valette J-J, Zerhouni W (2006) Long term consistency of multi-technique terrestrial reference frames, a spectral approach. In: Neilan R (ed) Proceedings of IAG G6, IAG general meeting, Cairns, August 2005Google Scholar
  28. Lemoine JM, Capdeville H (2006) Corrective model for Jason-1 DORIS Doppler data related to the South Atlantic Anomaly. J Geod (this issue)Google Scholar
  29. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96, NASA/TP-1998-206861. Goddard Space Flight Center, GreenbeltGoogle Scholar
  30. Luthcke SB, Zelensky NP, Rowlands DD, Lemoine FG, Williams TA (2003) The 1-centimeter orbit: Jason-1 precision orbit determination using GPS, SLR, DORIS and altimeter data. Mar Geod 26(3–4):399–421. DOI 10.1080/01490410390256727Google Scholar
  31. Noll C, Dube M (2001) The IGS global data center at the CDDIS, an update. Phys Chem Earth Solid Earth 26(6–8):603–604. DOI 10.1016/S1464-1895(01)00108-9CrossRefGoogle Scholar
  32. Noll C, Soudarin L (2006) On-line resources supporting the data, products, and infrastructure of the International DORIS Service. J Geod (this issue). DOI 10.1007/s00190-006-0051-yGoogle Scholar
  33. Nothnagel A, Dill R, Feissel-Vernier M, Ferland R, Noomen R, Willis P (2003) EOP alignment campaign. IGS/IVS/ILRS/DORIS EOP combinations, systematic errors. IERS technical note 30, Observotoire de ParisGoogle Scholar
  34. Orgiazzi D, Tavella P, Cerretto G, Collins P, Lahaye L (2005) First evaluation of a rapid time transfer within the IGS global real-time network. In: Breakiron (ed) Proceedings of the 36th annual precise time and time interval (PTTI) systems and applications meeting. Institute of Electrical and Electronics Engineers, Piscataway, p 721. ISBN: 0-7803-9053-9Google Scholar
  35. Pavlis EC, Mertikas SP, GADVOS team (2004) The GADVOS mean sea level and altimeter calibration facility, results for Jason-1. Mar Geod 27(3–4):631–655. DOI 10.1080/01490410490902106CrossRefGoogle Scholar
  36. Pearlman MR, Degnan JJ, Bosworth JM (2002) The International Laser Ranging Service. Adv Space Res 30(2):135–143. DOI 10.1016/S0273-1177(02)00277-6CrossRefGoogle Scholar
  37. Reigber C, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine JM, König R, Loyer S, Neumayer H, Marty JC, Barthelmes F, Perosanz F, Zhu SY (2002) A high-quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys Res Lett 29(14):371–374CrossRefGoogle Scholar
  38. Riepl, S,Hase, H Boer, A Schlueter, W Carvacho, E Reeves, R Ramirez, D Guaitiao, C Chavez, E Escobar, R Bustamante, C Aedo, R Avendano, M Remedi, G Cifuentes O (2003) Installing TIGO in Concepción. In: Noomen R, Klosko S, Noll C, Pearlman M (eds) Proceedings of the 13th international Workshop on laser ranging “toward millimeter accuracy”, NASA/CP-2003-212248, GreenbeltGoogle Scholar
  39. Rothacher M, Dill R, Thaller D (2004) The IERS combination pilot project. In: First EGU meeting, Nice, France, 25–30 April 2004, EGU04-A-06622Google Scholar
  40. Rummel R, Rothacher M, Beutler G (2005) Integrated Global Geodetic Observing System (IGGOS), science rationale. J Geodyn 40(4–5):355–356 DOI 10.1016/j.jog.2005.06.003Google Scholar
  41. Schlueter W, Himwich E, Nothnagel A, Vandenberg N, Whitney A (2002a) IVS and its important role in the maintenance of the global reference systems. Adv Space Res 30(2):145–150. DOI 10.1016/S0273-1177(02)00278-8CrossRefGoogle Scholar
  42. Schlueter W, Hase H, Böer A, Riepl S, Cecioni A (2002b) TIGO starts its operation in Concepción in 2002. CSTG bulletin no 17. International Association of GeodesyGoogle Scholar
  43. Snajdrova K, Boehm J, Willis P, Haas R, Schuh H (2006) Multi-technique comparison of tropospheric zenith delays derived during the CONT02 campaign. J Geod 79(10–11):613–623. DOI 10.1007/s00190-005-0010-zCrossRefGoogle Scholar
  44. Soudarin L, Cretaux JF (2006) A model of present-day tectonic plate motions from 12 years of DORIS measurements. J Geod (this issue)Google Scholar
  45. Soudarin L, Crétaux JF, Cazenave A (1999) Vertical crustal motions from the DORIS space-geodesy system. Geophys Res Lett 26(9):1207–1210. DOI 10.1029/1999GL900215CrossRefGoogle Scholar
  46. Stepanek P, Hugentobler U, Le Bail K (2006) First DORIS data analysis at Geodetic Observatory Pecny. J Geod (this issue)Google Scholar
  47. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004a) GRACE measurements of mass variability in the Earth system. Science 305(5683):503–505. DOI 10.1126/science.1099192CrossRefGoogle Scholar
  48. Tapley BD, Bettadpur S, Watkins MM, Reigber C (2004b) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607. DOI 10.1029/2004GL019920CrossRefGoogle Scholar
  49. Tavernier G, Soudarin L, Larson K, Noll C, Ries J, Willis P (2002) Current status of the DORIS pilot experiment and the future International DORIS Service. Adv Space Res 30(2):151–156. DOI 10.1016/S0273-1177(02)00279-XCrossRefGoogle Scholar
  50. Tavernier G, Granier JP, Jayles C, Sengenes P, Rozo F (2003) The current evolution of the DORIS system. Adv Space Res 31(8):1947–1952. DOI 10.1016/S0273-1177(03)00155-8CrossRefGoogle Scholar
  51. Tavernier G, Fagard H, Feissel-Vernier M, Lemoine F, Noll C, Ries JC, Soudarin L, Willis P (2005) The International DORIS Service, IDS. Adv Space Res 36(3):333–341. DOI 10.1016/j.asr.2005.03.102CrossRefGoogle Scholar
  52. Trigunait A, Parrot M, Pulinets S, Li F (2004) Variations of the ionospheric electron density during the Bhuj seismic event. Ann Geophys 22(12):4123–4131CrossRefGoogle Scholar
  53. Williams SDP, Willis P (2006) Error analysis of weekly station coordinates in the DORIS network, J Geod (this issue). DOI 10.1007/s00190-006-0056-6Google Scholar
  54. Williams SDP, Bock Y, Fang P, Jamason P, Nikolaidis R, Prawirodirdjo L, Miller M, Johnson DJ (2004) Error analysis of continuous GPS position time series. J Geophys Res Solid Earth 109(B3):3412. DOI 10.1029/2003JB002741CrossRefGoogle Scholar
  55. Willis P, Heflin M (2004) External validation of the GRACE GGM01C gravity field using GPS and DORIS positioning results. Geophys Res Lett 31(13):L13616 DOI 10.1029/2004GL02003CrossRefGoogle Scholar
  56. Willis P, Ries JC (2005) Defining a DORIS core network for Jason-1 precise orbit determination based on ITRF2000, Methods and realization. J Geod 79(6–7):370–378. DOI 10.1007/s00190-005-0475-9CrossRefGoogle Scholar
  57. Willis P, Haines B, Berthias JP, Sengenes P, Le Mouel JL (2004) Behavior of the DORIS/Jason oscillator over the South Atlantic Anomaly. C R Geosci 336(9):839–846. DOI 10.1016/j.crte.2004.01.004CrossRefGoogle Scholar
  58. Willis P, Bar-Sever Y, Tavernier G (2005a) DORIS as a potential part of a global geodetic observing system. J Geodyn 40(4–5):494–501. DOI 10.1016/j.jog.2005.06.011CrossRefGoogle Scholar
  59. Willis P, Boucher C, Fagard H, Altamimi Z (2005b) Geodetic applications of the DORIS system at the French Institut Geographique National. C. R. Geosci 337(7):653–662. DOI 10.1016/j.crte.2005.03.002CrossRefGoogle Scholar
  60. Willis P, Jayles C, Bar-Sever YE (2006a) DORIS, from altimetric missions orbit determination to geodesy. C R Geosci (in press). DOI 10.1016/j.crte.2005.11.013Google Scholar
  61. Willis P, Soudarin L, Lemoine F (2006b) Looking for systematic errors in scale from terrestrial reference frame derived from DORIS data. In: Rizos C (ed) IAG Proceedings. IAG general meeting, Cairns, August 2005. Springer, Berlin Heidelberg New York (in press)Google Scholar
  62. Zhao C, Shum CK Yi Y Ge S Bilitza D Callahan P (2004) Accuracy assessment of the TOPEX/Poseidon ionosphere measurements Mar Geod 27(3–4):729–740. DOI 10.1080/01490410490889076Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • G. Tavernier
    • 1
    Email author
  • H. Fagard
    • 2
  • M. Feissel-Vernier
    • 3
  • K. Le Bail
    • 4
  • F. Lemoine
    • 5
  • C. Noll
    • 11
  • R. Noomen
    • 6
  • J. C. Ries
    • 7
  • L. Soudarin
    • 8
  • J. J. Valette
    • 8
  • P. Willis
    • 9
    • 10
  1. 1.DCT/PO/AL-Bpi 2002Centre National d’Etudes SpatialesToulouse Cedex 9France
  2. 2.Service de la Géodesie et du NivellementInstitut Géographique NationalSaint-Mandé CedexFrance
  3. 3.SYRTE, Observatoire de ParisParisFrance
  4. 4.LAREG, Institut Géographique NationalMarne-la-Vallée Cedex 2France
  5. 5.NASA Goddard Space Flight Center (GSFC)Planetary Geodynamics, Code 698GreenbeltUSA
  6. 6.Faculty of Aerospace Engineering, Department of Earth Observation and Space SystemsDelft University of TechnologyDelftThe Netherlands
  7. 7.Center for Space Research, Mail Code R1000The University of Texas at AustinAustinUSA
  8. 8.Collecte Localisation SatellitesRamonville Saint-AgneFrance
  9. 9.Direction Technique, Institut Géographique NationalSaint-MandéFrance
  10. 10.Jet Propulsion Laboratory (JPL)California Institute of TechnologyPasadenaUSA
  11. 11.Crystal Dynamics Data Information System (CDDIS)NASA Goddard Space Flight Center (GSFC), Code 690.5GreenbeltUSA

Personalised recommendations