Journal of Geodesy

, Volume 80, Issue 8–11, pp 637–648 | Cite as

Geocentre motion measured with DORIS and SLR, and predicted by geophysical models

  • M. Feissel-Vernier
  • K. Le Bail
  • P. Berio
  • D. Coulot
  • G. Ramillien
  • J. -J. Valette
Original Article

Abstract

Geocentre motion signals measured by satellite geodesy and those predicted from the observed mass redistribution in the ocean, atmosphere and terrestrial waters over 1993.1–2003.0 are analysed and compared under two viewpoints: the amplitudes and phases of the seasonal components, and the spectral signature of the non-seasonal components. The geodetic signals partly match the geophysical variations in the seasonal band, with possible remaining annual and semi-annual errors in both techniques, at the millimetre level in the equatorial plane for Satellite laser ranging (SLR) and Doppler Orbitography and radiopositioning integrated on Satellite (DORIS), and at the centimetre level in Tz (Z-axis translation) for DORIS. Unlike SLR, the DORIS annual signatures in all three geocentre components have strongly varying amplitudes after 1996. The amplitude of the annual geophysical signal in Ty is slowly growing with time. All three geophysical fluids contribute to this effect. The magnitude of the geophysically derived long-term geocentre motion is of the same magnitude in the Tx, Ty and Tz directions, with a 0.5–1.0 mm Allan standard deviation for the 1-year sampling time, while the geodetic values are 2 mm in the equatorial plane for both SLR and DORIS, 4 mm for SLR and 9 mm for DORIS in the Tz direction. The mismatch of the geodetic signal with the geophysical one in the inter-annual band is suggested to be due partly to excessive geodetic noise and partly to underestimated geophysical signal.

Keywords

Reference frames Geocentre Geophysical fluids DORIS SLR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan DW (1966) Statistics of atomic frequency standards. IEEE Trans 54:221–231Google Scholar
  2. Allan DW (1987) Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators. IEEE Trans 34:647–654Google Scholar
  3. Altamimi Z, Boucher C, Sillard P (2002) ITRF2000: a new release of the International Terrestrial Reference Frame for Earth science applications. J Geophys Res Solid Earth 107(B10):2214. DOI: 10.1029/2001JB000561CrossRefGoogle Scholar
  4. Blewitt G (2003) Self consistency in reference frames, geocentre definition, and surface loading of the solid Earth. J Geophys Res 108(B2):2103–2112. DOI: 10.1029/2002JB002082CrossRefGoogle Scholar
  5. Blewitt G, Lavallée D, Clarke P, Nurutdinov K (2001) A new global mode of Earth deformation: seasonal cycle detected. Science 294(5550):2342–2345. DOI: 10.1126/science.1065328CrossRefGoogle Scholar
  6. Bouillé F, Cazenave A, Lemoine JM, Crétaux JF (2000) Geocenter motion from the DORIS space system and laser data to the Lageos satellites: comparison with surface loading data. Geophys J Int 143(1):71–82CrossRefGoogle Scholar
  7. Chen JL, Wilson CR, Eanes RJ, Nerem RS (1999) Geophysical interpretation of observed geocentre variations. J Geophys Res 104(B2):2683–2690. DOI: 10.1029/1998JB900019CrossRefGoogle Scholar
  8. Clarke PJ, Lavallée DA, Blewitt G, van Dam TM, Wahr JM (2005) Effect of gravitational consistency and mass conservation on seasonal surface mass loading models. Geophys Res Lett 32(8):L06306. DOI: 10.1029/2005GL022441CrossRefGoogle Scholar
  9. Coulot D (2005) Télémétrie laser sur satellites et combinaison de techniques géodésiques. Contribution aux syst笥s de référence et applications. (SLR and combinations of space-geodetic solutions. Contribution to reference systems.) PhD dissertation, Paris Observatory, 7 July 2005Google Scholar
  10. Crétaux J-F, Soudarin L, Davidson FJM, Gennero MC, Bergé-Nguyen M, Cazenave A (2002) Seasonal and interannual geocentre motion from SLR and DORIS measurements: comparison with surface loading data. J Geophys Res 107(B12):2374–2382. DOI: 10.1029/2002JB001820CrossRefGoogle Scholar
  11. Dong DJ, Dickey JO, Chao Y, Cheng MK (1997) Geocenter variations caused by atmosphere, ocean and surface ground water. Geophys Res Lett 24(15):1867–1870. DOI: 10.1029/97GL01849CrossRefGoogle Scholar
  12. Dong DJ, Yunck T, Heflin M (2003) Origin of the International Terrestrial Reference Frame. J Geophys Res 108(B4):2200–2209. DOI: 10.1029/2002JB002035CrossRefGoogle Scholar
  13. Exertier P, Bonnefond P (1997) Analytical solution of perturbed circular motion: application to satellite geodesy. J Geod 71(3):149–159. DOI: 10.1007/s001900050083CrossRefGoogle Scholar
  14. Greff M, Biancale R, Crétaux J-F, Exertier P, Lemoine J-M, Loyer S, Legros H, Gegout P, Feissel-Vernier M, Sillard P (2005) Geocenter: notion, definition and realization. AGU fall meeting 2005, G03Google Scholar
  15. Heflin M, Bertiger W, Blewitt G, Freedman A, Hurst K, Lichten S, Lindqwister U, Vigue Y, Webb F, Yunck T, Zumberge J (1992) Global geodesy using GPS without fiducial sites. Geophys Res Lett 19(2):131–134Google Scholar
  16. Kistler RE, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–268CrossRefGoogle Scholar
  17. Le Bail K (2006) Estimating the noise in space-geodetic positioning. The case of DORIS. J Geod (same issue)Google Scholar
  18. Le Bail K, Valette JJ, Zerhouni W, Feissel-Vernier M (2006) Long-term consistency of multi-technique terrestrial reference frames, a spectral approach. In: Tregoning P, Rizos C (eds) IAG symposium series, vol 130. Springer, Berlin Heidelberg New York (in press)Google Scholar
  19. McCarthy DD, Petit G (eds) (2004) IERS Conventions (2003). Section 7.1.5. IERS Technical Note 32. Verlag des Bundesamts fütographie und Geodaesie, Frankfurt am Main, 127 pp, ISBN 3-89888-884-3Google Scholar
  20. Milly PCD, Shmakin AB (2002) Global modeling of land water and energy balances: 1. The Land Dynamics (LaD) model. J Hydrometeorol 3(3):283–299. DOI: 10.1175/1525-7541CrossRefGoogle Scholar
  21. Parke ME, Stewart RH, Farless DL, Cartwright DE (1987) On the choice of orbits for an altimetric satellite to study ocean circulation and tides. J Geophys Res 92:11693–11707Google Scholar
  22. Penna NT, Stewart MP (2003) Aliased tidal signatures in continuous GPS height time series. Geophys Res Lett 30(23):2184–2187. DOI: 10.1029/2003GL018828CrossRefGoogle Scholar
  23. Ramillien G, Frappart F, Cazenave A, Güntner A (2005) Time variations of land water storage from an inversion of 2 years of GRACE geoids. Earth Planet Sci Lett 235(1–2):283–301. DOI: 10.1016/j.epsl.2005.04.005CrossRefGoogle Scholar
  24. Ray J (ed) (1999) IERS Analysis campaign to investigate motions of the geocenter. IERS technical note 25, Observatoire de ParisGoogle Scholar
  25. Rutman J (1978) Characterization of phase and frequency instabilities in precision fequency sources: fifteen years of progress. Proc IEEE 66:1048–1058CrossRefGoogle Scholar
  26. Shiskin J, Young AH, Musgrave JC (1965) The X-11 variant of the Census method II seasonal adjustment program. Technical paper No. 15, Bureau of the Census, U.S. Department of CommerceGoogle Scholar
  27. Soudarin L, Crétaux J-F, Cazenave A (1999) Vertical crustal motions from the DORIS space-geodesy system. Geophys Res Lett 26(9):1207–1210. DOI: 10.1029/1999GL900215CrossRefGoogle Scholar
  28. Stammer D, Wunsch C, Giering R, Eckert C, Heimbach P, Marotzke J, Adcroft A, Hill CN, Marshall J (2002) The global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. J Geophys Res 107(C9):3118–3118. DOI: 10.1029/2001JC000888CrossRefGoogle Scholar
  29. Stewart MP, Penna NT, Lichti DD (2005) Investigating the propagation mechanism of unmodelled systematic errors on coordinate time series estimated using least squares. J Geod 79(8):479–489. DOI: 10.1007/s00190-005-0478-6CrossRefGoogle Scholar
  30. Tavernier G, Fagard H, Feissel-Vernier M, Lemoine F, Noll C, Ries J, Soudarin L, Valette J-J, Willlis P (2005) The International DORIS Service (IDS). Adv Space Res 36(3):333–341. DOI: 10.1016/j.asr.2005.03.102CrossRefGoogle Scholar
  31. Tavernier G, Fagard H, Feissel-Vernier M, Le Bail K, Lemoine F, Noll C, Ries J, Soudarin L, Valette J-J, Willlis P (2006) The International DORIS Service: genesis and early achievements. J Geod (same issue)Google Scholar
  32. Willis P, Heflin M (2004) External validation of the GRACE GGM01C gravity field using GPS and DORIS positioning results. Geophys Res Lett 31(33):L13616. DOI: 10.1029/2004GL020038CrossRefGoogle Scholar
  33. Willis P, Boucher C, Fagard H, Altamimi A (2005) Applications géodésiques du système DORIS à l’Institut Géographique National, (Geodetic applications of the DORIS system at the French Institut Géographique National). C.R. Geosci 337(7):653–662. DOI: 10.1016/j.crte.2005.03.002CrossRefGoogle Scholar
  34. Willis P, Berthias JP, Bar-Server YE (2006) Systematic errors in the Z-geocentre derived using satellite tracking data: a case study from SPOT-4 DORIS data in 1998. J Geod 79(5):567–572. DOI: 10.1007/s00190-005-0013-9CrossRefGoogle Scholar
  35. Wu X, Argus DF, Heflin MB, Irvins ER, Webb FH (2002) Site distribution and aliasing effects in the inversion for load coefficients and geocentre motion from GPS data. Geophys Res Lett 29(24):2210–2213. DOI: 10.1029/2002GL016324CrossRefGoogle Scholar
  36. Wu X, Argus DF, Heflin MB, Irvins ER, Webb FH (2003) Large-scale global surface mass variations inferred from GPS measurements of load-induced deformation. Geophys Res Lett 30(14):1742–1745. DOI: 10.1029/2003GL017546CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. Feissel-Vernier
    • 1
    • 2
  • K. Le Bail
    • 2
    • 3
  • P. Berio
    • 3
  • D. Coulot
    • 2
    • 3
  • G. Ramillien
    • 4
  • J. -J. Valette
    • 5
  1. 1.SYRTE, Observatoire de ParisParisFrance
  2. 2.LAREG, Institut Géographique NationalMarne La Vallée Cedex 2France
  3. 3.GEMINI, Observatoire de la Côte d’AzurGrasseFrance
  4. 4.Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS)Observatoire Midi-PyrénéesToulouse Cedex 9France
  5. 5.Collecte Localisation Satellites (CLS)Ramonville St-AgneFrance

Personalised recommendations